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White Matter Volume Assessment in Premature Infants on MRI at Term -
Computer Aided Volume Analysis

Michèle Péporté

Abstract

The objective of this study is the development of an automatic segmentation framework

for measuring volume changes in the white matter tissue from premature infant MRI

data. The early stage of the brain development presents several major computational

challenges such as structure and shape variations between patients. Furthermore, a high

water content is present in the brain tissue, that leads to inconsistencies and overlapping

intensity values across different brain structures. Another problem lies in low-frequency

multiplicative intensity variations, which arises from an inhomogeneous magnetic field

during the MRI acquisition. Finally, the segmentation is influenced by the partial volume

effects which describe voxels that are generated by more than one tissue type.

To overcome these challenges, this study is divided into three parts with the inten-

tion to locally segment the white matter tissue without the guidance of an atlas. Firstly,

a novel brain extraction method is proposed with the aim to remove all non-brain tissue.

The data quality can be improved by noise reduction using an anisotropic diffusion filter

and intensity variations adjustments throughout the volume. In order to minimise the

influence of missing contours and overlapping intensity values between brain and non-

brain tissue, a brain mask is created and applied during the extraction of the brain tissue.

Secondly, the low-frequency intensity inhomogeneities are addressed by calculating the

bias field which can be separated and corrected using low pass filtering. Finally, the

segmentation process is performed by combining probabilistic clustering with classifi-

cation algorithms. In order to achieve the final segmentation, the algorithm starts with

a pre-segmentation procedure which was applied to reduce the intensity inhomogenei-

ties within the white matter tissue. The key element in the segmentation process is the

classification of diffused and missing contours as well as the partial volume voxels by

performing a voxel reclassification scheme. The white matter segmentation framework

was tested using the Dice Similarity Metric, and the numerical evaluation demonstrated

precise segmentation results.
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Chapter 1

Introduction

This chapter introduces the motivation for the Magnetic Resonance Imaging (MRI) brain

segmentation on premature infants. The difficulties and the fundamental challenges as-

sociated with the MRI segmentation task are discussed as minor and major contributions

which have arisen during this research work. This chapter is finalised by describing the

structure of this thesis.

1.1 Motivation

The main focus of this research work lies on the automatic segmentation and measu-

rement of specific regions from infant brain Magnetic Resonance (MR) images. By

analysing the resulting measurements, clinical experts are aiming to achieve an early

diagnosis of neurodevelopment impairment with the focus on Cerebral Palsy (CP). An

early intervention can benefit the children during their development and increase their

state of life. However, the early identification of the infants who are at a high risk to

develop a neurodevelopment impairment is a great challenge for clinicians. Harnsberger

et al. [58] provides a useful insight into the development of the newborn brain MRI and

the undergoing changes in the brain structure during the first years.

In the majority of cases, the neurodevelopment disability occurs in preterm infants. Mar-

low et al. [84] stated that approximately 40% of premature infants develop a neurodeve-

lopment impairment such as cognitive, neurological or behavioural disabilities and that

the underlying problems of cerebral abnormalities such as minor motor disability or at-

tention deficit remain unclear. The earlier the infants are born prematurely, the higher the

possibility that a neurodevelopment impairment occurs. Woodward et al. [130] stated

that 5-15% of the premature infants develop cerebral palsy. The physical deficit condi-

tion called cerebral palsy was first described by William Little in 1843 and was defined

by Bax et al. [18] as follow:
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"Cerebral palsy (CP) describes a group of disorders of the development

of movement and posture, causing activity limitation, that are attributed to

non-progressive disturbances that occurred in the developing fetal or in-

fant brain. The motor disorders of cerebral palsy are often accompanied

by disturbances of sensation, cognition, communication, perception, and/or

behaviour, and/or by a seizure disorder"

One way for an early prognosis of the neurodevelopment impairment is the analysis of

Magnetic Resonance Imaging (MRI). Several studies [61] [96] have revealed that neu-

rodevelopment disabilities of preterm infants are caused by abnormalities in the white

matter and grey matter regions. Figure 1.1 introduces a T2-weighted MR image1 of

a two year old healthy child. At this stage the brain regions are fully developed and

visually distinguishable, which would not be the case for a few weeks old infants. In Fi-

gure 1.1 it can be observed that all white or very bright parts represent the cerebrospinal

fluid (CSF) in the brain, the darkest grey regions define the white matter and the middle

range grey level regions include the grey matter. The brain is surrounded by skull and

fat.

Figure 1.1: A T2-weighted brain MR image of a two year old child, including the layout of the
different brain regions.

In the case of a developed cerebral palsy, this impairment can be visualised at the age of

24 months. Figure 1.2 displays T2-weighted brain MRIs of two children at approxima-

tely two years who suffer from cerebral palsy. It can be observed that the reduced brain

tissue is replaced with CSF.
1T2-weighted MR images is one type of sequence which can be obtained by an MRI scanner. In T2-

weighted MR images, the fluid is presented in high intensity values and fat is presented in low intensity
values.
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Figure 1.2: T2 brain MR images of children at the age of approximately two years which suffer
from cerebral palsy. It can be observed that the reduced brain tissue is replaced with
cerebrospinal fluid.

The brain structure of children younger than twelve months differs significantly in size

and shape from the adult brain, in particular in the central part of the brain. This can

be observed in Figure 1.3 where an image from a premature infant at the age of a few

weeks and a second image from a child at the age of two years are shown. The MR

images contain intensity non-uniformities, partial volume effects and noise which can

be observed as intensity variations. Noise, intensity non-uniformities and intensity va-

riations are introduced during the MR acquisition process. The partial volumes and the

diffused contours are partially generated by the ongoing process of myelination2 of the

white matter and by the limitations on the resolution of the MR data. The intensity

inconsistencies arise in preterm infants and cause the white matter to be extremely dif-

ficult to distinguish from the grey matter in various MRI sequences. On the other hand,

the intensity inhomogeneities within the white matter tissue is higher in preterm infants

compared to infants born at term [59]. Recent studies [21] have provided an insight into

the differences between infants born at term and premature infants. The aim of these

studies was to compare the evolution of the neurodevelopment impairment by analysing

the data that is captured at different age stages. At the age of 2 years, the majority of

the white matter has myelinated. Additionally, due to a higher level of fluid in the in-

fant brain tissue, the MR images do not display clear boundaries between different brain

regions, and this causes difficulties for clinical experts in establishing a precise and ac-

curate diagnosis during the visual examination. In computer vision, this translates into a

challenging segmentation task where, for example, methods which rely on probabilistic

atlases generated from adult brain images can return large misclassification rates [91].
2The myelination describes the brain developing process in which the myelin sheath (a fatty substance)

accumulates around a nerve fiber for a faster transmission of the nerve impulses.
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Figure 1.3: Left: A MR brain image from a premature infant at the age of a few weeks; Right:
A MR brain image of a child at the age of approximately two years.

Most abnormal patterns are visible to experts. The challenge is to investigate small

abnormalities which can been seen as intensity, shape or volume differences. These dif-

fering patterns can go undetected during the visual examination performed by clinical

experts. To this end, the aim of this study is to develop a framework which identifies,

extracts and measures the white matter volume. An example of original and segmen-

ted images is illustrated in Figure 1.4. The right image presents the original image in

which the contours of the detected white matter volume is projected in red colour. The

intensity variations within the white matter tissue and the diffused contours between the

grey matter and the white matter are clearly visible in Figure 1.4. The following section

outlines the challenges when segmenting premature infant brain MR images.

Figure 1.4: Left: An original T2 brain MR image of a premature infant. Right: The same image
where the contours of the white matter region are marked in red. The objective of
this study is to automatically detect and measure the white matter volume.
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1.2 Objectives of this research

This study is a proof of concept for a preliminary study within a pre-defined clinical

context. This project is built on a pilot study which was pre-defined by the Temple

Street Children Hospital, Dublin, who also provided the medical insight and the data.

The objective is the development of a white matter segmentation algorithm for prema-

ture infant brain MRI scans, which were captured on a 1.5 Telsa scanner with a resolution

of 512× 512 pixels and a thickness of 1mm. The approach will be used by the clinicians

which allows them to perform research on the white matter volume measurements while

focusing on the early diagnosis of the slow arising neurodevelopment impairments, es-

pecially cerebral palsy.

For this reason, this study focuses on the development of a brain segmentation ap-

proach for premature infant MR images. The majority of the state-of-the-art brain seg-

mentation techniques have been developed for adult datasets. Consequently, their ap-

plication to infant brain segmentation is limited. For that reason, this research work

focuses on the robust segmentation of newborn infant MRI, which is an essential task in

the study of diagnosing neurodevelopment disorders at an early stage.

1.2.1 Challenges

In Section 1.1 the visual differences between infant and adult brain MRI have been outli-

ned. From a computer vision perspective, more challenges are encountered when dealing

with infant MRI. Even though each brain tissue region is visually distinguishable in the

MR images, the segmentation of corresponding areas is challenging due to intensity va-

riations within regions, artefacts such as noise and motion, and partial volume effects

(PVE).

To emphasise the development of the brain in the first two years of life, the intensity

distribution and changes between the MR images taken from a child at birth, at the age

of one year and two years are illustrated in Figure 1.5 (in the associated histograms for

each image, the background pixels have been removed). The intensity distribution of

the child MR images over time demonstrates significant changes. As a consequence,

the differentiation of the brain tissue region in children at a young age is difficult. This

comparison also reveals that the infant MRI presents a high level of artefacts. The ol-

der the child is, the more distinctive the differentiation of the brain tissues is. In an adult

MRI, the distribution of the intensity in a histogram would present three peaks; grey mat-

ter (GM), white matter (WM) and CSF. The inversion of the WM/GM intensity values

between newborns and older children/adults (as shown in Figure 1.5) is an additional

complication when applying existing brain segmentation algorithms to newborn image

data.
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Figure 1.5: On the left are the histograms of the corresponding images on their right. The top
row shows an example of an MR image from an infant at term; the second row
illustrate an image of the same child at the age of one year; the third row displays
an image of the same child at the age of 2 years. The histograms reveal that the
intensity distribution changes over time and the more structured the brain tissue is,
the stronger is the differentiation between GM and WM.

Most of the research work on brain segmentation has been done on adult data. The clini-

cal overview in Section 1.1 has revealed large differences between adult and infant brain

MR images. A common and demanding task required for MR brain segmentation (early

born and adult) is the minimisation of the intensity inhomogeneities across the image,

also called bias field correction. The bias field can be described as a low-frequency

multiplicative signal which is caused by variations of the magnetic field during the MRI
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acquisition. Examples of images corrupted by bias field are presented in Figure 1.6.

In the early stage of the brain development, the brain tissue contains a high and in-

consistent water content. This results in a non-uniform intensity distribution within the

brain tissue and diffused contours. In addition, due to the stress of the premature birth,

strong variations in the structure and shape of the brain tissues can appear. Both factors

are illustrated in Figure 1.6.

Figure 1.6: The left example displays a bias field corrupted image in which the intensity values
vary throughout the image. The three infant brain images illustrate shape and struc-
ture differences between patients. A more common dissimilarity in infant brain MRI
data is the enlarged ventricles, which are the bright areas in the middle of the brain
tissue. This is caused by stress during the premature birth but does not necessarily
indicate ill health of the infant.

Due to the small head size during infancy, the scanning procedure has to be performed

at high resolution. In addition, the acquisition process is conducted rapidly because the

infants tend to move. The high resolution and the short scanning time lead to a high

level of noise and low contrast between the grey matter and the white matter tissue. This

issue was illustrated in Figure 1.3 when comparing the adult and infant brain MR images.

A demanding task is the exclusion of the deep grey matter during white matter seg-

mentation. In adult data, the deep grey matter is well defined and can be grouped in six

smaller regions. During infancy, it is difficult to distinguish the white matter and the

deep grey matter due to the high amount of water content within the brain tissue. In

addition, the contours of the deep grey matter are often diffuse and sometimes missing.

An example of the deep grey matter in adult and infant brain MRI data is displayed in

Figure 1.7.
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Figure 1.7: Differences in the deep grey matter between an adult (left) and infant (right) brain
MR image. The contours of this region are marked in red.

If PVE is present, the intensity of the voxel is generated by more than one tissue and

this has been a challenging problem for all steps of the proposed framework. First the

PVE emerged in the skull stripping procedure where the boundaries between the brain

tissue and non-brain tissue can be unclear. The aim of the bias field correction algorithm

is to identify the intensity variations within each image, which can be demanding when

containing large PVE. Finally, in the extraction of the white matter region, the PVE

challenges the segmentation of the white matter tissue when distinguishing between WM

and GM. The best way to illustrate the partial volume voxels is on contiguous images

within a volume as displayed in Figure 1.8. The red arrows mark some regions which

consist of partial volume voxels.

All these challenges characterise the brain segmentation of infant data as a demanding

task.
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Figure 1.8: Three contiguous images of a patient in which some of the partial volume voxels are
marked with red arrows. The partial volume effects are related to the structure of the
brain and they raise a challenge for the white matter segmentation algorithm.

1.2.2 Contributions

The previous section has outlined the principal challenges which are involved in the

segmentation of premature infant MRI data. The main aim of this research work is the

development of a robust brain segmentation approach to extract the white matter region

in preterm infant data. The focus lies on the measurements of premature infant data

so that the underlying anatomical changes can be identified. When dealing with the

previously mentioned challenges, different steps are required to achieve a precise brain

segmentation technique.

The main contribution of this study is the development of an automatic framework for

premature infant brain image segmentation. Due to the fact that the brains of premature

infants tend to consist of large variations in shape and structure, the designed method is

not guided by a pre-defined template or atlas. For this reason, the proposed approach

includes three main steps; brain extraction, bias field correction and white matter seg-

mentation. Another contribution is that this complex task was solved using fundamental

techniques which were carefully combined in order to obtain a robust white matter seg-

mentation framework.

A significant challenge is the poor quality of the infant brain MR images. One of

the reasons is that the brain tissue of infants contains a large amount of fluid which

generates intensity inconsistencies and less defined boundaries. The image quality can

be improved by applying a filter to remove the noise. Another problem encountered

during the MRI data analysis consists of the contrast variations which arise during the

MR acquisition procedure. These intensity changes occur from one patient to the next

but also during the same sequence. This issue can be decreased when enhancing the
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contrast between the grey matter and the white matter tissues. One way of diminishing

the overlapping of intensity values between different regions, as demonstrated in Figure

1.5, is by removing all non-brain tissue. During this step, the missing and diffused

contours between brain and non-brain tissues are addressed when generating a mask of

the region of interest.

As mentioned in Section 1.2.1, the intensity inconsistencies within images, also cal-

led bias field, have a major impact on the segmentation procedure and this is, therefore,

an important contribution to this study. The bias field causes a slow varying shading ef-

fect in the MR images. Assuming that the brain information consists of high-frequency

signals, the intensity variations can be separated from the image by extracting the low-

frequency information. The technique to adjust this type of artefact is called bias field

correction.

A major contribution of this research involves a novel algorithm for the extraction

and measurement of the white matter region. A common approach in brain segmentation

is to use a template in order to extract the region of interest. Template-based algorithms

have difficulties in the presence of severe pathologies and are, therefore, limited to large

variations in shape and structure which is the common case in premature infants. This

problem is solved here by not relying on template and, therefore, using local intensity-

based methods. A technique independent of templates is less vulnerable to dissimilarities

between the two cerebral brain halves, that can easily occur on premature infants data. A

local intensity-based method can locate and regroup the partial volume voxels into their

corresponding tissue class.

As mentioned in Section 1.2.1, the cerebellum and the deep grey matter consist of

grey matter and white matter, and the high water content causes false segmentation when

extracting the white matter tissue. As these brain regions are not of interest in this study,

in this thesis a novel algorithm is proposed which localises and removes these regions

from the WM data. The main idea followed in this work was to detect feature points such

as contours and create an elliptical shape which corresponds to the region of interest.

Finally, the performance of the proposed approach is assessed by a quantitative and

qualitative evaluation on a large database including preterm and term born infant brain

MR images. To illustrate the generalisability of the proposed approach, the algorithm

was tested on the large database of 1.5T MRI data which was given by the collaborating

hospital and on public available 3T MRI datasets.

The outlined contributions are presented in various steps throughout this study. The

following section will introduce an overview of the proposed approach.
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1.3 Overview of the proposed approach

The main components of the proposed segmentation approach are presented in Figure

1.9. There are three main phases required to extract the white matter region in infant

brain MRI data.

The framework starts with a novel approach for brain extraction (also called skull-

stripping) and involves the removal of the non-brain tissue, which is explained in detail

in Chapter 3. The proposed method reduces the image artefacts, generates binary masks,

extracts the region of interest, and improves the results in a post-processing step. One of

the challenges of this method is to determine the exact contours which differentiate the

skull and fat from the brain tissue. Unlike the adult brain, the infants do not necessarily

have a visible CSF region surrounding the brain tissue, which leads to unclear and dif-

fused regions. For this reason, the mask is generated in three steps. Firstly to reduce the

partial volume effects, secondly to remove disconnected small non-brain tissue, and then

to generate the final mask with the aid of edge detection. To prevent under-segmentation,

the final extraction of the brain tissue is performed in a region wise manner. For clarity

all these steps are outlined in green in Figure 1.9.

The neonatal MRI data includes (besides noise and intensity inconsistencies) addi-

tional artefacts which cause substantial spatial intensity variations within an image. In

order to address this problem, an approximation of each tissue region is necessary. The-

refore, an automated thresholding algorithm is performed to classify the brain tissue into

two regions (grey matter and white matter) by adding a probabilistic analysis. This is a

key element because the grey matter belongs to a different intensity range than the white

matter tissue. In this way, the intensity changes can be separately estimated for grey

matter and white matter and then combined in a intensity map on which the bias field

calculation is performed using a low pass filter.

The major component is the probabilistic approach for the final segmentation of

the white matter region. In the proposed technique two separate clustering methods

are performed with the goal to reduce the influence of the partial volume effects and

diffuse boundaries. To speed up the final segmentation, the white matter volume is pre-

segmented. As mentioned before, the cerebellum and the deep grey matter provide a

great challenge during the segmentation procedure because they are composed of grey

matter and white matter tissues. For this reason, both regions are separately detected by

fitting an ellipse to the region of interest (RoI) in order to correct and prevent false clas-

sifications in the white matter volume. The final segmentation is performed by judging

each voxel based on local re-classification which deals with partial volume voxels and

diffused contours.
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Figure 1.9: An outline of the proposed approach. The brain extraction algorithm is underlined in
green, the bias field correction algorithm is outlined in orange and the white matter
segmentation is marked in purple.

1.4 Overview of the thesis

This report is divided into seven chapters. The first chapter introduces the motivation

of this research work and provides an insight into the challenging task of working with

brain MRI of premature infants. The clinical overview in this chapter illustrates the risk

of prematurity and the neurodevelopment impairment. An overview of the proposed

approach is presented including the contributions that resulted from this study.

The second chapter presents an overview of the state-of-the-art approaches where

the main emphasis is placed on discussing the problems associated with existing MRI

brain segmentation algorithms. This allows the identification of the main directions of

research and the methods required to solve these tasks.

The third chapter presents a detailed description of the proposed brain extraction

algorithm. This chapter starts by briefly introducing the state-of-the-art methods and

the purpose of the skull stripping technique. This is followed by a description of each

12
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stage of the developed algorithm in detail. To demonstrate the accuracy of the method,

a numerical evaluation was performed.

The fourth chapter analyses the developed bias field correction technique. After

briefly introducing the state of the art, the fourth chapter gives a detailed description for

each step of the proposed approach. This includes the understanding of the varying bias

field in MR images followed by the correction of the corrupted images. Chapter 4 ends

with an experimental section that analyses the performance of the proposed method.

The fifth chapter presents the segmentation procedure which allows the extraction

of the white matter region in the brain MRI of infants. The white matter segmentation

is a difficult task in infant brain MR images because artefacts such as inconsistencies

in intensity, structure and shape, change from one patient to another and also during a

patient MRI sequence.

The sixth chapter includes experiments and a comprehensive quantitative and quali-

tative evaluation of the approach discussed in this thesis. The experiments were conduc-

ted on a large infant brain MRI database where the images were acquired when the

infant reached the age of term equivalent. For example, if a preterm infant was born

three months early then the scanning procedure was performed when the infant was

three months old.

The seventh chapter summarises this research work while outlining the contributions

resulting from this study. In the second part, the future work in relation to the proposed

segmentation framework is discussed.
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Chapter 2

Literature Review

The previous chapter introduced the clinical background of this research and presented

the key challenges when working with infant MRI data. The aim of this chapter is to out-

line the state of the art on MRI brain segmentation techniques. The main work in brain

segmentation has been conducted on adult brain MRI data. Only recently the interest in

the segmentation of MRI data of young children and infants has received more attention.

Therefore, the majority of the state-of-the-art methods presented in this chapter were

developed for processing adult brain data.

Neurodevelopment impairment has a substantial impact on the personal, social and pro-

fessional activities of patients and also on their family lives. The exact cause of the slow

developing cerebral palsy is still unclear and the process is irreversible. By diagnosing

the patient at an early stage of this neurodevelopment impairment, therapies can reduce

the severity of these disabilities. The analysis of brain MR images is the most common

method for this diagnosis. The segmentation of the brain MRI data has always been a

great challenge and the measurement of regions in Magnetic Resonance (MR) images is

a key task in the field of medical imaging. The process is important for a fast diagnosis,

especially for an early detection of small anatomical abnormalities which might not be

noticeable by visual examination.

As described in the previous chapter, the structure of the brain in infant MR images

differs significantly from adult brain MRIs. Thus, the analysis and processing of infant

brain MR images is an essential and difficult procedure. This process is partitioned into

pre-processing and segmentation parts. The main pre-processing parts can be divided

into three steps: brain extraction, bias field correction and registration. The first pre-

processing step includes the removal of all non-brain tissue in MR images; this task is

also called skull stripping or brain extraction. A state-of-the-art review of the brain ex-

traction algorithms is presented in Chapter 3. Another pre-processing step consists of

improving the image quality by reducing the influence of the bias field corruption. The
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bias field causes a slow varying shading effect in the MR images which arises from the

inhomogeneity of the magnetic field during the MRI acquisition. A survey that focuses

on the bias field correction techniques is presented in Chapter 4 and will, therefore, not

be further discussed in this chapter. The third pre-processing step is called registration.

The general idea of registering two images is to align them into the same space. One

instance when registration becomes especially important is when MRI sequences are ac-

quired from different MRI scanners. In this case, the registration algorithm transforms

each patient data into the same coordinate system and allows a comparison of the results.

Another reason is the incorrect positioning of the patient in the MRI scanner. During the

MRI acquisition process, patients will never be located in the exact same posture. Thus,

image registration maps a pair of images; one image will remain as a target or template

and the other one, the source image, is transformed to match it. The registration process

[8] calculates the transformation parameters and one image is transformed using these

parameters. Some segmentation techniques are based on templates or models where an

atlas is used as prior information to segment the region of interest in which case a regis-

tration algorithm is important. In our study, a registration technique is not essential for

the segmentation of the white matter because the data is acquired in the same coordinate

system and, therefore, a detailed description of this technique is beyond the scope of this

thesis.

The segmentation of specific brain regions in MRI data represents a major field of re-

search in medical image processing. The detected regions can be tumours, white matter

lesions, ventricles, white matter or grey matter. State-of-the-art reviews [14] in different

areas of brain MRI segmentation, such as the segmentation of cerebral cortical region

[118] or multiple sclerosis lesions [81], outline the medical background of the develo-

ped technique along with their algorithm description. In each review the authors classify

the developed methods in different ways. In this chapter, the segmentation techniques

are categorised into three main groups: surface-based algorithms (Section 2.1), atlas-

based methods (Section 2.2) and intensity-based segmentation (Section 2.3). After the

developed brain segmentation methods have been introduced, Section 2.4 gives a short

description of some available brain segmentation applications.

2.1 Surface-Based Segmentation

A popular segmentation approach for medical imaging applies surface-based methods

such as active contours, deformable models, levelset, active shape models and active

appearance models [4].

The active contour models, also called snakes, were first proposed by Kass et al.

[68]. This method is applied to outline object contours in an image based on a curve.
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The basic idea is to start with an initial curve and then to deform the curve to the contours

of the object.

X(s) = [x(s), y(s)] (2.1)

where s is an arc length commonly defined in a range of [0, 1]. It performs in a way that

minimises an energy function that is composed of two terms:

E = Eint(X(s))ds+ Eext(X(s))ds (2.2)

The term Eint(X(s))ds is called the internal energy and controls the tension and rigi-

dity of the deforming curve. The term Eext(X(s))ds describes the external energy and

directs the curve toward the object boundary. The advantage of this method is its relative

insensitiveness to contour initialisation, whereas on the other hand this method is time

consuming when applied to a 3D volume. Additionally, the method is sensitive to weak

or missing object contours.

Active Shape Models (ASM) [39] and Active Appearance Models (AAM) [38] are mo-

del based algorithms which perform a statistical analysis based on a training dataset to

detect an object by its shape and grey level intensity values. To interpret an object in

an image using a model, a set of parameters has to be found which describes the best

match between the model and the object. In general, this set of parameters or landmarks

describes the shape and position of the object in the image. Both methods learn the

changes of the object by modelling the training set. The ASM fits a set of landmarks to

a new image. Each point is fit to the new image by searching for the best match of the

nearby points. The AAM deforms a model to fit the position of the landmarks and a re-

gion presenting the texture of the model. The AAM evaluates the difference between the

new and the model image to update the parameters. Cootes et al. [37] investigated the

differences of performing ASM and AAM on brain MR data. Both methods are limited

for objects with large changes in shape, location and position of the objects. The model

can only deform within the limits of the training set. Therefore, a problem occurs if

the object displays untrained deformations which involve the difficulties of the labelling

of training samples with sufficient anatomical variations to include specific conditions.

Thus, this algorithm would be unsuitable for segmenting infant brain MRI data due to

the large variations in structure, shape and intensity as well as unclear boundaries.

Deformable models [88] change their initially provided shape to match a target struc-

ture. The adaptation is estimated by computing the minimisation of an energy function

(as in equation 2.2) which is composed of a weighted sum of internal and external energy

terms. In general, deformable models are active contour models which change their

shape in a 3D environment. Parametric deformable models have two limitations. Firstly,
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if the initial model and the required object differ greatly in shape and size, the model

must be dynamically reparametrised for successful results. Secondly, the method has

difficulties in adjusting to changes in structure such as splitting or merging. Generally,

the deformable models suffer from the same limitations as the active contour models

such as sensitiveness to weak or missing contours. Additionally, due to the 3D environ-

ment, the deformable models can be time consuming when applied to a large input data

such as a brain MRI volume.

A related technique to the active contour model is the levelset method [4]. In both

methods the same forces can be chosen to generate the contour. A major difference lies

in the way the contours are represented. In the case of the active contour model, the

boundaries are composed of contour points that parameterise the edges, while in the le-

velset method the boundaries are produced as the zero levelset of a higher dimensional

function. Wang et al. [126] proposed a levelset algorithm by combining information

of T11, T2 and DTI2 data. The levelset energy function embeds a set of three features

extracted from the data. Firstly, the local information of the intensity distribution is

selected from T1, T2, and FA3 images during the registration with a population based

atlas, secondly, a cortical thickness constraint term that indicates the thickness of the

cortical region and, finally, the longitudinal constraint term. The algorithm was tested

on 22 datasets of children representing different age stages between two weeks and one

year old. The results indicate that the partial volume effects prevent the extraction of the

white matter surrounded by the gyrus.

Xie and Mirmehdi [131] proposed a Magnetic Active Contour (MAC) model which was

applied on various medical images. In their technique, the object boundary and the ac-

tive contour are charged with electric current. The magnetic field is caused by the image

gradient of each of the currents’ interactions and generates a force which acts as external

force. The magnetic flux density at each pixel position is computed after estimating the

direction of the active contour and the current in the object boundary. The active contour

is defined as follows:

Ct = αg(x)κN̂ + (1− α)(F (x)N̂)N̂ (2.3)

where g(x) is the stopping condition, N̂ denotes the unit inward normal of the evolving

contour, κ describes the curvature, α is a real constant and F is the magnetic force
1T1-weighted MRI is another MR sequence in which the fluid-containing tissues are presented in low

intensity values.
2Diffusion tensor imaging (DTI) allows the measurement of the water flow and tracks the pathways of

the white matter in the brain.
3The FA images present the fractional anisotropy images of the DTI data with the objective of providing

information on the fibers.
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defined as:

F (c) = IcΥ(c)×B(c) (2.4)

where × is the cross product, B(c) presents the magnetic flux density, Υ(c) denotes

the electric current vector, I describes the image and c is the active contour position.

An advantage of this method is that the snake is less sensitive to its initial position and

robust against complex structures. The method has provided positive results on various

medical images. The technique performed well on 2D pre-processed data but showed

erroneous segmentation in a 3D space.

2.2 Template- and Atlas-Based Segmentation

In template-based segmentation, a model of the object is applied to guide the segmenta-

tion procedure. For a more complex structure, an atlas-based technique [28] can provide

a segmentation without the need of precise modelling. The algorithm performs brain

segmentation using the information of an atlas to influence and guide the prior know-

ledge of anatomical structure, location, shape and the spatial relationships. Using data

obtained from different patients, an atlas has a common anatomical map of the brain and

is employed as prior information in an algorithm. After pre-processing data with a re-

gistration method, this map is then utilised as a template to segment the region of interest.

Morphometry in brain segmentation is applied to calculate and compare differences in

brain size and shape across different MR images. This algorithm starts by aligning

the data into the same space using registration. The registration provides the basis

for Voxel-Based Morphometry (VBM) and Deformable-Based Morphometry (DBM). A

third type is Surface-Based Morphometry which segments an image into tissue classes

while converting the segmentation boundaries into parametric surfaces.

VBM [8] is employed to detect the main differences in the anatomy of the brain. In

general, this method starts with a spatial normalisation of all images by registering every

brain image to a template using a 12-parameter affine transformation. After registration,

each voxel is defined with a probability which specifies the tissue class where it belongs

by applying a modified mixture model cluster analysis technique. The modified mixture

model cluster analysis technique used for the brain tissue segmentation was proposed by

Ashburner and Friston [7] and iteratively partitions the images into grey matter, white

matter, cerebrospinal fluid and three other background classes. During the segmentation

process, the cluster parameters which includes the probability of the voxels, the variance

and the weight of each clusters are estimated from the nonuniformity corrected image.

Then the tissue probabilities are assigned based on the cluster parameters by using the

Bayes’ rule. These two steps are repeated until convergence. This is followed by a spatial

smoothing which is obtained by convolving with an isotropic Gaussian kernel. Finally,
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statistical tests can be performed using the general linear model to identify regions which

are used to show significant regional differences among populations. Corrections in the

volume can be carried out by including the Jacobian determinant into the calculation.

The VBM algorithm is incorporated in the well-known SPM tool which is freely avai-

lable and allows performing a large number of statistical tests on brain MRI data. The

SPM technique was investigated in this study in which the brain tissue on preterm infant

data was obtained and evaluated. Kennedy et al. [69] implemented the VBM with the

purpose to find age-related patterns in the brain structure. The authors stated that the

few existing comparisons of VBM are limited by small datasets, limited selection and

that the methods include manual measurements. Their aim was to overcome those limi-

tations with a larger dataset of 200 subjects with an age range between 18-81 years. The

limitations were also addressed by increasing the number of manually traced regions.

The conclusion was that VBM performs poorly in the detection of age differences in

the brain structure. Ashburner and Friston [10], and Bookstein [24] debated the use of

VBM. Bookstein’s main criticism was that, in case of systematic anatomical differences

among subjects, the VBM method would only detect some of the features but not all.

One of the main disadvantages of VBM is that it utilises a less precise image registration

so that regional volumetric differences cannot be accurately localised.

The DBM [6] [29] aims to detect shape differences in the anatomical structure. In

general, the local and global transformation will be calculated by registering the image

to a template. The correction can be optimised by applying the normalised mutual in-

formation. A Jacobian determinant of the deformations can be applied to measure the

regional tissue volume changes. An advantage of DBM is its ability to detect small

changes. However, due to the wide range of registration methods, there is no standard

technique for DBM. Boardman et al. [26] [27] and Aljabar et al. [2] designed DBM

methods for brain MRI segmentation of premature infants. Their study included a com-

parison between pre-term infants data, acquired at term equivalent, and term-born infants

data. Their method was based on DBM for the detection of abnormalities in breast data

which was developed by Rueckert et al. [100]. The global transformation was generated

using the affine transformation, and the local transformation was generated using the

free-form deformation based on B-Splines. The authors utilised the normalised mutual

information as a voxel-based similarity measure which has the advantage of not being

sensitive to intensity changes. The results indicate that the non-rigid registration is better

at finding the deformation than applying a rigid or affine transformation. The evaluation

of the approach revealed sensitiveness to volume changes of the white matter tissue and

partial volume voxels. The results also indicate that the partial volume effects and low

contrast limit the extraction of the white matter surrounded by the gyrus. In 94% of the

cases, two experts who examined the results stated that the non-rigid registration tech-

nique is preferable. In 4% of the cases, the results were influenced by the large motion
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in the images. Ball et al. [16] investigated the performance of DBM on infant brain

MRI data to examine alterations in the development of the thalamic region associated

with premature birth. The DBM algorithm developed by Ashburner et al. [11] was em-

ployed and the registration algorithm proposed by Rueckert et al. [100] was applied on

their database which consists of 74 pre-term infants acquired with a 3T scanner. Their

conclusion is that DBM is highly sensitive to volume changes, which was especially

observed when measuring the CSF. Additionally, they stated that the current image re-

gistration techniques have limitations when applied to infant data.

In atlas-based segmentation, prior knowledge of the anatomical structure of the brain

is applied to the segmentation method in the form of a probabilistic atlas. Similar to the

template based procedures, a registration technique is needed as a pre-processing step

in which the data is registered to the atlas. Atlas-based segmentation is widely used for

brain segmentation where the anatomical structure information is embedded to influence

the segmentation procedures.

The main challenge for atlas-based methods is the generation of a high quality atlas.

Usually, in brain segmentation, a probabilistic atlas is composed of a template and three

probability maps representing the grey matter, white matter and cerebrospinal fluid. In

order to generate an atlas, multiple segmented brain volumes are aligned and then the

average of the anatomical structure is used. In this regard, a probabilistic atlas represents

the changes in the anatomical structure of the brain. A high number of patients is requi-

red to construct a good quality atlas. For example, the MNI305 atlas of the Montreal

National Institute [43] was generated using 305 patients. The ICBM152 probabilistic

atlas [87] was created by registering 152 scans to the MNI305 atlas. These atlases are

constructed using adult MRI data.

Gousias et al. [50] [49] generated an atlas-based segmentation technique to employ

prior information from healthy adult brain MR images to overlay them on two-year-old

subjects. Their aim was not to extract the volumetric data of these regions but to de-

monstrate if the segmentation can be successful by applying atlases of adult MRIs to

two-year-old subjects. The authors proved that the use of adult templates in the brain

segmentation for two-year-old subjects results in erroneous segmentation. The segmen-

tation of infant brain MRI data with the help of adult templates was also evaluated by

Altaye et al. [3]. Their segmentation method included the generation of an adult-based

template and prior information maps, which were then applied to segment infant brain

MRI. The results demonstrated that the use of adult templates with infant data leads

to misclassification. This is due to the different shape and size structures of the infant

brains when compared to adult brains.

Only recently a technique was proposed by Murgasova et al. [73] with the aim of

generating a 4D probabilistic atlas for the developing brain during different stages in

20



2.2. Template- and Atlas-Based Segmentation

early childhood (age between 29 to 44 gestational weeks). The method consists of a

deformable atlas (created by manually aligning data to the atlas generated by the Mon-

treal Neurological Institute (MNI)4 using affine registration), atlas-based segmentation

and intensity-based segmentation to locate the brain tissue regions using an Expectation-

Maximization (EM) (a detailed description of EM is presented in Section 2.3.2). Most

segmented regions show an average result of at least 90% similarity to manually seg-

mented data. Due to the fast developing brain during childhood, the use of the altas is

restricted to the age of the children it was generated from. This means that their atlas is

only suitable for analysing infant brain MRI.

Shi et al. [110] designed a multi-region-multi-reference atlas technique to divide the

brain into multiple anatomical regions. The semi-automated pre-processing step first

applies two well-established brain extraction algorithms (BET and BSE) and then ma-

nually corrects the processed data to ensure accurate results. A subject-specific atlas is

generated using an adaptive Fuzzy C-Means algorithm. This is followed by the appli-

cation of a Gaussian model-based EM method which embeds the atlas information in

the brain tissue segmentation algorithm. The method was evaluated on 3T T1-weighted

neonatal, 12 and 24 months MRI data. The method uses the advantage of applying a

combination of multiple Gaussian models in order to distinguish more precisely the tis-

sue intensity distribution of each brain tissue. The generation of their own atlas which

was based on their database performed well when used with the Gaussian-based EM

algorithm. However, the results indicate that the method is sensitive to partial volume

effects. Additionally, the results demonstrate false segmentation in the deep grey matter.

Another way to perform atlas-based segmentation was proposed by Boer et al. [22]

who designed a segmentation approach to estimate the white matter lesion in adult MR

images. After removing the non-brain tissue and correcting the intensity non-uniformity,

the white matter lesion regions are segmented by applying a k-nearest-neighbour (kNN)

classifier. The training samples have been obtained by atlas-based registration. The

approach was developed for T1-weighted adult brain MRI. The results revealed that the

detection of the cerebrospinal fluid (CSF) is influenced by the approach used to register

the atlas to the brain MR images.

Prastawa et al. [95] presented an atlas-based segmentation method for newborn T1-

weighted MRI data. This approach consists of three steps. Firstly, the technique es-

timates the white matter intensity parameters by computing the Gaussian distribution

from previous detected parameters. This is followed by correcting the intensity inho-

mogeneity using spatial posterior probabilities to define a parametric classification. The

segmentation is achieved by non-parametric kernel density estimation. The described
4more information can be found at http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach (date of

access: 27/06/2013)
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method is fully automatic and the results presented for 50 datasets illustrate that varia-

tions in the brain shape have no negative impact on the segmentation process. As a

common problem of neonatal segmentation, the results indicate that the segmentation is

influenced by the partial volume effects between the grey matter and the white matter

along with misclassifications in CSF regions.

Gousias et al. [48] investigated the differences between infant and adult data, and

the differences between pre-term and term-born infants’ brain MRI. Therefore, T1- and

T2-weighted MR images with a total of 18 pre-term and 5 term control datasets were

manually segmented. A second aim of the study was to generate an atlas for newborn

datasets. By comparing their results with adult datasets, the authors concluded that there

are major differences between infant and adult MRI data such as the low contrast and

high variability between patients within newborn datasets. Additionally, the newborn

brain images have low contrast and are significantly affected by bias field corruption.

The contrast between the GM and WM in infant images is only half of the adult data.

This is caused by the higher resolution used during the image acquisition of infant data.

To deal with the segmentation challenges of the fast developing brain in early child-

hood, the methods presented in this section applied either templates or probabilistic at-

lases. Assigning prior knowledge to a segmentation algorithm is strongly dependent on

the age of the patients. Atlas-based segmentation has provided accurate results when

applied to healthy patients with little or no abnormal anatomical structure. Due to large

differences in the brain structure and shape between the prematurely born and term-born

infants, the atlas obtained from infants born at term can provide false segmentation in

premature infant MR images [62]. Differences in the brain structure and volume were

presented by Broadman et al. [26] using deformable-based morphometry. In template

and atlas-based segmentation methods, the procedure is limited by the quality of the

template or atlas and the precision of the registration process.

2.3 Intensity-Based Segmentation

Intensity-based methods classify voxels based on intensity information into different

classes. When dealing with images with low contrast, noise, artefacts, partial volume ef-

fects and intensity inhomogeneities, brain segmentation can be a challenging task when

using intensity-based methods. The following paragraphs introduce various intensity-

based techniques that were used in brain segmentation. As mentioned before, most

methods have been developed for adult MRI data.

In early segmentation techniques [79], intensity thresholds were employed to extract

the region of interest. These methods manually select or automatically compute a thre-

shold and then use it to segment the image by partitioning the MRI data. In this way, the
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threshold value allows the distinction between the region of interest and the background.

Histogram-based segmentation [106] approaches are based on applying one or multiple

intensity thresholds detected by histogram analysis to segment the desired region. These

methods are often followed by morphological operations such as opening, closing, di-

lation and erosion, which are combined with connectivity analysis. These thresholds

work well on regions with strong contrast differences. Brain MR images during infancy

present blurred regions with diffused, unclear boundaries, a high level of noise, contrast

variation and intensity overlapping between brain tissues. These image characteristics

generate errors when performing thresholding. Histogram analysis has been considered

and applied in different stages in this study with the purpose to extract primary informa-

tion about the brain.

The Watershed algorithm [14] is a gradient-based segmentation technique and has been

often used for MR segmentation [55] [54]. Merisaari et al. [89] designed an automatic

brain segmentation method using watershed (WSEG). This approach initially removes

the non-brain tissue with the help of a Brain Extraction Tool (BET) [113], then the brain

region is segmented using the watershed algorithm, and finally, a Gaussian Mixture Mo-

delling (GMM) classifies the brain tissue into three clusters (WM, GM and CSF). The

outcome was analysed by experts from the University of Turku, Finland, who stated

that the results were not sufficiently precise, as some CSF, WM and GM regions were

misclassified. Gui et al. [52] have recently presented a morphological-based automatic

segmentation algorithm for neonatal MRI brain data. After pre-processing the data with

the bias field correction algorithm proposed by Mangin et al [83] and registering T1-

and T2-weighted MRI data using the SPM8 tool, the procedure is divided into five steps:

brain extraction, detection of subcortical grey matter, detection of GM, WM and CSF,

detection of cerebellum and brainstem, and finally, the detection of the myelinated white

matter. During these steps, the data is repeatedly processed by applying morphological

operators such as erosion and dilation, followed by a marker-based watershed algorithm.

The segmentation of the GM, WM and CSF is performed by utilising a region growing

algorithm with a distance map as a stopping condition, and the seedpoints are located

using the K-means algorithm. The framework has been successfully tested on 30 heal-

thy infants data and four premature infant datasets acquired with a 3T scanner. This data

has the advantage of stronger contours and less PVE. The algorithm is limited to locate

regions close to the gyri, which are the convex shapes in the surface of the brain. In

addition, the method also relies on knowledge about the brain structure which differs

between patients, especially during infancy.

Another type of gradient-based segmentation is the semi-automatic live-wire technique

[17], which has been applied to different areas of medical imaging such as segmentation,
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and classification of bones in MRIs [117] [80] and brain MRI segmentation [71] [72].

In general, the live-wire algorithm is a semi-automatic method that allows a simple and

fast extraction of the region of interest (RoI) using user interaction. A few researchers

[44] [56] developed techniques which extend the two dimensional procedure to three

dimension (3D). In the 3D extended algorithm, the initial contours are created in a 2D

image. Then, they are distributed in the volume by calculating the intersections with

user defined contours. The live-wire technique relies on edges defined by the changes

in the intensity values. For this reason, this method is not suitable for infant MR images

due to unclear or missing contours.

2.3.1 Fuzzy Clustering

Clustering techniques are popular methods that were also applied to automatic brain

segmentation. Clustering methods can be grouped into two classes: hard clustering and

soft clustering algorithms. The hard clustering techniques [63] group the features into

clusters (or classes) where each feature is assigned to one cluster only. Alternatively, in

soft clustering, each feature is assigned to multiple clusters and each feature has asso-

ciated membership levels. These membership levels define the association between the

features and clusters. For this reason, the soft clustering is often employed in brain MRI

segmentation.

One of the most widely applied fuzzy clustering technique in brain MRI is the Fuzzy

C-Means (FCM) algorithm [1] [34] which uses the spatial relationship of the neighbou-

ring voxels and boundary detection. The FCM optimises the association between voxels

and clusters iteratively by recalculating the fuzzy membership function and the centres

of each cluster.

Wieclawek and Pietka [129] embedded an interactive 2D live-wire method into a 3D

FCM clustering procedure, which is then followed by morphological operations. The

idea is to start with one image in the volume, called reference image, on which the

features are extracted and then apply this information to the contiguous images in the

volume. Kannan et al. [66] developed a Fuzzy C-Means to segment breast and brain MRI

data. In this method, instead of computing the Euclidean distance, the authors propose to

apply a kernel function to the feature space to reduce computational complexity. Ji et al.

[65] developed a Fuzzy Local Gaussian Mixture Model (FLGMM) for segmentation of

adult brain MRI data by minimising the energy function of the Gaussian Mixture Model

(GMM) that is computed for every voxel in the image. Fuzzy memberships are applied

to balance the information of each GMM and are, therefore, dependent on the mean and

on the variance of the local Gaussian Mixture. A simplified Gaussian kernel function

is implemented to establish the spatial constraint. In order to overcome the challenges

caused by intensity inhomogeneities, a bias field correction model was embedded into

the FCM. The segmentation was performed on 3T and 7T brain MRI data.
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Ahmed et al. [1] applied a FCM technique where clustering is extended by em-

bedding a bias field correction algorithm called Bias-Corrected FCM (BCFCM). This

method modifies the membership function of a standard FCM and estimates the inten-

sity inhomogeneities. Additionally, the approach facilitates the labelling of a voxel by

considering the labels of its surrounding voxels. Therefore, the neighbour voxels act as

a regulator and influence the final results. This method was used to segment brain MRIs

into three classes; background, grey matter and white matter, and it was tested using

adult MRI data. The results were compared with the results obtained by a traditional

FCM and an Expectation-Maximization (EM) algorithm. Their output indicates that the

BCFCM produces the same results as the EM but the BCFCM produces better results

than EM in the presence of noise. This algorithm was tested on our database in Chapter

4 with the aim of correcting the bias field in the MR images.

FCM is based on clustering intensity values in an image and can be described as a com-

putationally expensive and complex algorithm. On the positive side, the FCM algorithm

can combine the segmentation process with the bias field correction which can then be

strengthened with the influence of an atlas. One disadvantage of the FCM method is

that it does not consider the spatial information, which may reduce its accuracy in the

presence of noise. Although the embedding of local spatial information has improved

its performance, the algorithm is also sensitive to initial parameterisation and can be

trapped by local minima.

2.3.2 Probabilistic-Based Segmentation

In general, probability-based techniques assign a pixel to a class based on a probability

value. A Markov Random Field (MRF) algorithm is a statistical model that allows com-

puting spatial relations that exist between pixels and their corresponding neighbours. A

segmentation method can employ MRF and it can decrease the influence of noise by

using the neighbourhood information.

Bazin et al. [19] introduced a belief propagation based segmentation approach for

Diffusion Tensor Images (DTI). Their work is based on MRF to model the diffusion

properties and a Belief Propagation (BP) technique was used to estimate the most likely

fiber tracts at voxel level. A prior atlas is generated and applied to influence the segmen-

tation procedure. Their aim is to develop a method which can robustly identify the white

matter lesions by tracing the fibers in DTI images. The experimental results indicate that

the technique is sensitive to differences between patients, noise and head orientation.

Additionally, the segmentation results are influenced by registration errors.

A more recent attempt of brain segmentation using a 3D region-based Hidden Mar-

kov Model (rbHMM) has been proposed by Huang et al. [60]. In the first step, a

watershed algorithm is applied to define regions and the parameters for the rbHMM
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and the Maximum A Posteriori (MAP) states are estimated using the Viterbi algorithm

[123]. The hidden states are initialised by applying a K-means clustering algorithm on

the observed features which are defined by the mean values of the extracted regions.

The approach was designed for T1-weighted adult MRI data that is available from the

BrainWeb database5. A numerical evaluation has been performed and compared against

a grid-based HMM. The rbHMM results show an improvement compared to the grid-

based HMM. However, the output indicates under-segmentation in the subcortical struc-

ture, which implies segmentation difficulties on regions with weak contrast.

Supervised approaches have the advantage that the classification can be guided by

the training data. On the other side, the generation of the training data is time consuming

and difficult. The algorithm is limited to the trained structure and large variations could

lead to false segmentation, which is especially the case in pre-term infants.

A more popular statistical model employed in brain segmentation, is the Expectation-

Maximization (EM) algorithm in which the parameters are iteratively estimated with

respect to missing or hidden data. The idea in an EM algorithm is to commence with an

initial estimation of the model built upon the observable features and then the results are

improved by adjusting iteratively the E-step and the M-step. During the E-step, the dis-

tribution of the hidden data is estimated by evaluating the current estimated parameters.

During the M-step, the estimated parameters are updated by maximising the expected

log-likelihood function which was computed in the E-step. The calculated parameters

are then utilised to determine the distribution of the hidden data in the following E-step

until convergence. A description of the EM technique is provided in Section 5.3.

In brain segmentation, the most commonly applied model to calculate the data dis-

tribution is the Gaussian Mixture Model (GMM) presented as a probability density func-

tion which estimates the distribution in each class.

Shattuck and Leathy [108] developed an approach called BrainSuite. The approach

first uses an algorithm called Brain Surface Extraction (BSE) [109] to extract the brain

tissue. Their bias field correction algorithm is based on a combination of global and

local estimation of the tissue nonuniformity. The white matter and grey matter segmen-

tation is achieved with the help of a Maximum A Posterior probability classifier. The

approach was tested on T1-weighted adult brain MRI. The method is sensitive to the ini-

tial orientation of the brain volume and the technique allows user interaction for manual

parameter adjustments.

The EM algorithm is sensitive to initialisation because it can only find the local ex-

tremum. Therefore, the common approach in brain segmentation is to use the EM with

a probabilistic atlas. For this reason, the atlas is first registered to the new data and then
5available at http://brainweb.bic.mni.mcgill.ca/brainweb/ (accessed 14/04/2010)
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employed as a weight during the EM calculations. Leemput et al. [77] and Ashburner

and Friston [9], both perform an EM which is influenced by atlas to extract the grey

matter and the white matter in adult brain MRI data. The weights obtained from an

atlas are applied in different parts of the algorithm. In the EM algorithm proposed by

Leemput et al., the weights are fixed probability values represented by the atlas and they

influence the results during the E-step. On the other hand, the EM method developed by

Ashburner and Friston recalculates the weights in each iteration during the M-step by

combining them with the probability values acquired from the atlas.

Wells [125] was the first to propose an EM framework that is embedded with a bias

field correction algorithm. The Gaussian distribution parameters are estimated from a

histogram analysis during a pre-processing step. The authors then combined the bias

field estimation and the classification as a non-linear optimisation. Grimson et al. [51]

presented an adaptive algorithm to segment white matter, grey matter and cerebrospinal

fluid. The EM approach includes a bias field measurement during the M-step, which

is an equivalent to an MAP estimator of the bias field. The approach was evaluated on

T2-weighted adult MRI data and presented successful results even without the additional

influence of an atlas.

Murgasova et al. [90] [91] analysed the anatomical differences in the brain during

early development. After an initial investigation that aimed to develop a brain atlas for

young children [73], the authors proposed a population specific deformable and proba-

bilistic atlas for brain segmentation. This technique applies registration, a template-

based method to correct the intensity inhomogeneities and, finally, an Expectation-

Maximization segmentation algorithm that is influenced by an atlas. The study focused

on one and two-year-old children using 3T T1-weighted MR images. The registration er-

rors were not included in the evaluation results. An advantage of this atlas-based method

is the accurate segmentation results in the deep grey matter region.

Since most researchers have focused on the segmentation of the brain data with nor-

mal anatomical structure, Cardoso et al. [31] focused on processing infant brain MRI

data with structural abnormalities. In order to perform the brain extraction, a popula-

tion specific template based on T1-weighted MRI data is built and then combined with

the atlas developed by Murgasova et al. [73]. A Maximum A Posteriori Expectation-

Maximization algorithm is proposed which includes intensity nonuniformity correction

and embeds the spatial dependence via a Markov Random Field. The authors state that

an atlas-based segmentation method alone does not return acceptable results on pre-

term infant brain MRI data. The outcome illustrates some under-segmentation within

the white matter and the CSF, on the other hand, the segmented grey matter regions de-

monstrate over-segmentation. These limitations are the result of the low contrast and

the overlapping of intensity ranges between brain tissues. To overcome these issues the

authors suggest to incorporate additional information from corresponding T2-weighted
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MR images.

The advantage of the EM method is that the parameters are probabilistically adjusted

and the EM technique can easily be extended by including other processes such as bias

field correction. On the other hand, the convergence can be slow, depending on the

amount of hidden data, and the results depend on the initial parameters. Nevertheless,

the EM technique has provided accurate results when used for the segmentation of brain

MRI data of young children and infants.

2.4 Brain Segmentation Software

A few researchers have made their developed software publicly available. In this section,

tools including BrainSuite [108], FSL [40] [112], SPM8 [116], MRIcroN [99], ITK6 and

TurtleSeg [120] [121] are discussed and followed by a table which summarises the most

important information.

• Statical Parametric Mapping (SPM):

SPM is a well-established state-of-the-art tool and is used in various areas of me-

dical image analysis. SPM99 is available since May 2001 and the latest version

is SPM8 [116] which provides a large range of medical image analysis functions.

For our study, only the segmentation part is of interest. The segmentation process

uses Voxel-Based Morphometry (VBM) which performs region-wise volumetric

comparisons among populations of subjects. SPM8 extracts three regions (GM,

WM and CSF) and for each region a volume is generated.

• BrainSuite:

BrainSuite [108] is an image analysis application designed for the identification of

tissue types and surfaces in brain MR images. As mentioned above, each medical

analysis tool has been designed for a specific task. BrainSuite was specifically

developed for cortical surface extraction. This tool is easy to install and includes

a user friendly interface which was implemented in C++ to allow a fast brain

extraction process. To implement brain extraction, the Brain Surface Extraction

(BSE) algorithm is embedded and this algorithm has been is described in detail in

Section 3.1. This method is used in a stepwise manner which allows the user to

adjust its parameters during brain segmentation. A negative aspect of BrainSuite

is that during our experiments the software needed to be restarted for each patient

data. BrainSuite was developed and tested on T1-weighted brain MRI data. This

tool has been evaluated on four types of data; adults with depression, adults with

Alzheimer, young control healthy patients and elderly control healthy patients.
6available at http://www.itk.org/ITK/project/welcome.html (accessed 02/07/2013)
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• FMRIB Software Library (FSL):

FSL is a library which consists of medical analysis methods for processing fMRI,

MRI and DTI brain data. The brain segmentation technique is called FAST (FM-

RIB’s Automated Segmentation Tool). This method commences with an initial

segmentation using a tree-K-Means algorithm. The segmentation is then perfor-

med by a probability model which separates the tissue types based on their inten-

sity distribution. Artefacts such as low resolution, noise, motions, bias field and

overlapping intensity ranges between tissue types, complicate and limit the accu-

racy of the segmentation process. The software includes a technique to extract

the brain tissue, called Brain Extraction Tool and this algorithm was discussed in

Section 3.1

• MRIcroN:

MRIcroN [99] is a simple and user friendly tool for medical image analysis which

can be applied to generate 2D or 3D renderings of statistical overlay maps on brain

anatomy images. An advantage is the integrated data format converter which al-

lows the transformation of Dicom images into NIfTI format. This tool was origi-

nally developed to process T1-weighted adult brain MRI data. MRIcroN includes

a brain extraction technique called Brain Extraction Tool which is the same as the

method used by FSL.

• Insight Segmentation and Registration Toolkit (ITK):

ITK toolkit7 was developed to analyse and process medical images such as CT

and MRI. By using a selection of well-known algorithms, the framework can pro-

cess different types of medical images focusing on two main tasks: registration

and segmentation. The segmentation procedure commences by performing the

Perona-Malik algorithm in order to smooth the image while preserving the edge

information. In addition, Canny edge detection or watershed algorithm can be ap-

plied for boundary detection. Then, region growing and deformable models such

as levelsets can be employed for the segmentation procedure. ITK was imple-

mented in C++ and enables interfacing with programming languages such as Tcl,

Python and Java. Using a system (known as Dart), the toolkit can be extensively

tested on a daily base. An advantage is that the framework can be applied to all

operating systems, Unix, Windows and Mac Os X.

• TurtleSeg:

TurtleSeg [120] [121] is an interactive and semi-automatic segmentation tool, de-

veloped by the Medical Image Analysis Lab at Simon Fraser University and the
7available at http://www.itk.org/ITK/project/welcome.html (accessed 02/07/2013) and a software guide

is presented in http://www.itk.org/ItkSoftwareGuide.pdf (accessed 09/07/2010)
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Signal and Image Computing Laboratory at the University of British Columbia.

This technique is based on a 2D live-wire which is used to semi-automatically

trace contours on a set of images with different orientations. This is done by using

manually selected seedpoints to generate intersections and contours on images

using the live-wire technique. The information obtained from the selected images

is then used to create a 3D segmentation using the Turtlemap 3D Live-wire algo-

rithm.

All these described applications were developed for adult datasets and lead to erroneous

segmentation when applied to infant brain MRI. VBM performs the registration using a

template which is based on the adult brain structure. As mentioned in Section 2.2, the

consequences are that regional volume differences cannot be accurately localised and all

image registration techniques show limitations when applied to infant data. BrainSuite

uses a spatial classification scheme to group the voxels in their tissue type. A major

problem lies in the false classification of the deep grey matter and cerebellum regions.

MRIcroN applies a brain extraction algorithm called BET which was examined on our

database and the results are presented and discussed in Appendix A. FSL uses the al-

gorithm called FAST for brain segmentation, which assumes that each tissue type has a

corresponding peak in the histogram. However, the low contrast between the cerebellum

and deep grey matter regions causes significant problems. The contrast in infant MRI is

weaker than in adult brain data and the approach will return incorrect segmentation. ITK

is an application which includes a wide range of techniques available for brain segmen-

tation and their strengths and limitations have been outlined in this chapter. On the other

hand, TurtleSeg, for example, relies on user interaction and the contours are detected

using live-wire.

The brain extraction algorithms which are provided by some of these approaches

(SPM, BrainSuite, FSL and MRIcroN) have been used as comparison methods in many

skull stripping studies. For this reason, an investigation on their performance using infant

data was carried out and the experiments are presented in Appendix A. A brief analysis

of the brain segmentation tools discussed in this section is presented in Table 2.1.

2.5 Conclusions

This chapter provided a detailed review of the current state-of-the-art techniques for

brain MRI segmentation. The methods are divided into three main categories: surface-

based, atlas-based and intensity-based segmentation.

In Section 2.1 the surface-based methods such as active contour model, active shape

model and levelset based algorithms are discussed. All of these methods have provided

accurate results in many areas of medical image segmentation. Since these algorithms

30



2.5. Conclusions

N
am

e
Pu

rp
os

e
L

oc
at

io
n

D
at

a
(a

du
lt)

M
et

ho
ds

L
im

ita
tio

ns
w

he
n

ap
pl

ie
d

to
in

fa
nt

da
ta

SP
M

(2
00

9)
T

hi
s

is
a

to
ol

us
ed

to
an

al
ys

e
va

ri
ou

s
m

ed
ic

al
br

ai
n

da
ta

ht
tp

://
w

w
w

.fi
l.i

on
.u

cl
.a

c.
uk

/
sp

m
/

fM
R

I,
M

R
I,

PE
T,

SP
E

C
T,

E
E

G
,

M
E

G

Vo
xe

l-
ba

se
d

m
or

ph
o-

m
et

ry
It

is
ba

se
d

on
ad

ul
tt

em
pl

at
es

,
w

hi
ch

pr
ov

id
es

in
co

rr
ec

ts
eg

-
m

en
ta

tio
n

w
he

n
ap

pl
ie

d
to

in
fa

nt
da

ta
B

ra
in

Su
ite

(2
01

1)
T

hi
s

so
ft

w
ar

e
id

en
-

tifi
es

tis
su

e
ty

pe
s

an
d

su
rf

ac
es

in
hu

-
m

an
br

ai
n

M
R

I

ht
tp

://
w

w
w

.lo
ni

.u
cl

a.
ed

u
/S

of
tw

ar
e/

B
ra

in
Su

ite
ht

tp
://

ne
ur

oi
m

ag
e.

us
c.

ed
u/

ne
ur

o/
B

ra
in

Su
ite

M
R

I
Sp

at
ia

lc
la

ss
ifi

ca
tio

n
T

he
lo

w
co

nt
ra

st
re

gi
on

s
le

ad
to

in
co

rr
ec

ts
eg

m
en

ta
tio

n
es

-
pe

ci
al

ly
in

th
e

de
ep

gr
ey

m
at

-
te

rr
eg

io
n

FS
L

(2
01

2)
FS

L
is

a
co

m
pr

e-
he

ns
iv

e
lib

ra
ry

of
to

ol
sf

or
an

al
ys

is
of

br
ai

n
da

ta

ht
tp

://
fs

l.f
m

ri
b.

ox
.a

c.
uk

/
fs

l/f
sl

w
ik

i/
fM

R
I,

M
R

I
an

d
D

T
I

FM
R

IB
’s

A
ut

om
at

ed
Se

gm
en

ta
tio

n
To

ol
(F

A
ST

)
ba

se
d

on
hi

d-
de

n
M

ar
ko

v
R

an
do

m
Fi

el
d

m
od

el
an

d
E

M
al

go
ri

th
m

O
ve

rl
ap

pi
ng

in
te

ns
ity

be
t-

w
ee

n
tis

su
es

ca
n

ca
us

e
pr

o-
bl

em
s

M
R

Ic
ro

N
(2

00
9)

To
ol

to
an

al
ys

e
an

d
vi

su
al

is
e

m
ag

ne
tic

re
so

na
nc

e
im

ag
es

ht
tp

://
w

w
w

.m
cc

au
sl

an
d

ce
n-

te
r.s

c.
ed

u/
m

ri
cr

o/
m

ri
cr

on
/

M
R

Ia
nd

fM
R

I
B

ra
in

E
xt

ra
ct

io
n

To
ol

(B
E

T
)

O
nl

y
th

e
br

ai
n

ex
tr

ac
tio

n
m

e-
th

od
of

M
R

Ic
ro

N
is

re
la

te
d

to
th

is
st

ud
y

IT
K

(2
01

2)
To

ol
to

se
gm

en
t

an
d

re
gi

st
er

m
ed

i-
ca

li
m

ag
es

ht
tp

://
w

w
w

.it
k.

or
g/

m
ed

ic
al

da
ta

Pe
ro

na
-M

al
ik

fil
te

-
ri

ng
,

C
an

ny
ed

ge
de

te
ct

or
,

w
at

er
sh

ed
,

re
gi

on
gr

ow
in

g,
de

fo
rm

ab
le

m
od

el
s

In
co

rr
ec

t
se

gm
en

ta
tio

n
in

lo
w

co
nt

ra
st

re
gi

on
s

Tu
rt

le
Se

g
(2

01
0)

It
er

at
iv

e
se

gm
en

ta
-

tio
n

to
ol

fo
r

3D
im

ag
es

ht
tp

://
w

w
w

.tu
rt

le
se

g.
or

g/
su

pp
or

ts
im

ag
e

fo
rm

at
s

su
ch

as
D

IC
O

M
,

N
IF

T
I,

M
IN

C
,

M
E

TA
IM

A
G

E
an

d
A

na
ly

ze

L
iv

e-
w

ir
e

Se
m

i-
au

to
m

at
ic

an
d

pr
es

en
ts

pr
ob

le
m

s
w

he
n

de
al

in
g

w
ith

m
is

si
ng

or
di

ff
us

ed
co

nt
ou

rs

Ta
bl

e
2.

1:
L

is
to

ft
he

av
ai

la
bl

e
br

ai
n

se
gm

en
ta

tio
n

so
ft

w
ar

e
de

ve
lo

pe
d

fo
ra

du
lt

da
ta

(a
cc

es
se

d
27

/0
6/

20
13

).

31
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are sensitive to missing and diffused contours or rely on shape and structure, they have

not been regarded suitable for infant brain segmentation.

In Section 2.2 template and atlas-based techniques were described. These methods

have the advantage that prior knowledge of anatomical structure, location and shape is

used for brain segmentation. In the presence of low contrast between different brain

tissue, the atlas-based methods are an efficient choice. In brain segmentation, an atlas

brings a common anatomical map of the brain to guide the segmentation. Since atlases

are population specific, these methods generate erroneous segmentation when applied to

brain MRI data of infants with anatomical abnormalities. Further, the quality of the atlas,

which is dependent on large segmented databases, is crucial for a satisfactory segmen-

tation. Apart from the quality of the atlas, the accuracy of these methods is influenced

by the precision of the registration procedure, which has demonstrated limitations when

applied to infant brain MRI data.

Basic intensity-based methods such as histogram analysis are useful for data with a

strong contrast differentiation, which is characteristic for adult brain data but not for in-

fant MR images. To improve performance, the watershed method has also been applied

to medical images but tends to result in over-segmentation. The more popular methods

are fuzzy clustering and EM segmentation, which have produced accurate results when

used for brain MRI segmentation. FCM and EM are well-known for potentially getting

trapped in local minima. The recent trend in infant brain segmentation is to implement

the atlas-based EM technique. Due to the fact that the EM method has provided ac-

curate results in processing infant brain MRI data, this study will further advance the

application of the EM algorithm to premature infant data. A limitation of the atlas-based

segmentation is the registration error. To avoid this limitation in the approach discussed

in this thesis, the anatomical knowledge is locally used in various stages of the segmen-

tation process.

The final section of this chapter gave an overview of popular applications developed

for processing medical images. Some of these applications have been tested on our

database and the results will be described throughout this thesis. Their main limitation is

that none of them was developed and tested for the use of infant brain MRI data. Adult

brain images provide a strong contrast between tissues and clear contours, which is not

the case in infant data. For this reason, techniques developed for adult data generate

incorrect results.
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Chapter 3

Brain Extraction

3.1 Introduction

The previous chapter presented an outline on the state-of-the-art techniques of the brain

MRI segmentation algorithms. Summarising all techniques, there are two major types

of infant brain MRI segmentation. The first category of methods start with a registration

procedure, for example as presented by Murgasova et al. [91] where after registering the

data to an atlas, the bias field correction and segmentation are simultaneously performed

using an EM algorithm. The second category of brain segmentation techniques include

three steps, which consist of brain extraction, bias field correction and segmentation.

A common way of processing infant brain MRI is to bias the segmentation process with

anatomic prior knowledge such as an atlas. Due to the lack of an available atlas for in-

fant MRI data, the segmentation task described in this thesis is divided into three main

steps. Firstly, a brain extraction algorithm is proposed, in which all non-brain tissues

are removed. Secondly, a developed bias field correction method is presented, in which

the intensity inhomogeneity within an image is adjusted and, finally, the brain tissue is

segmented by introducing a white matter segmentation procedure.

This chapter will introduce the first stage of the brain segmentation, which involves the

extraction of the brain tissue. This procedure is called brain extraction or skull stripping

and requires the removal of all non-brain tissue such as skull, fat and cerebrospinal fluid

parts. Consequently, the extracted region consists of the cortical grey matter, white mat-

ter, deep grey matter and cerebellum. The use of automatic skull stripping facilitates and

speeds up the overall segmentation process. Due to inconsistencies in the MR images,

brain extraction remains an essential and difficult step in brain segmentation. It is clear

that due to the early development stage of the brain structure, this task is more challen-

ging when using infant brain MRI data. This was outlined in Section 1.1 by introducing
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the differences in the anatomical structure between adult and infant brains.

Over the past thirteen years, various techniques have been proposed for unsupervised

skull stripping such as histogram-based [15] [107], region-based [55] [109], boundary-

based [113], graph-cut based [101], fuzzy-based [70] or hybrid approaches [105] [33].

Rehm et al. [98] divided some of the Brain Extraction Algorithms (BEA) into different

categories such as intensity thresholding, edge detection, atlas based, deformable mo-

dels and hybrid models. Most skull stripping approaches were developed for adult brain

MRI and are outlined in this section. Many researchers who performed infant brain seg-

mentation did not employ brain extraction because the procedure can be accomplished

in a probabilistic classification by embedding prior knowledge such as atlases. For this

reason, only a few brain extraction algorithms with the focus on infant data were deve-

loped and they will be explained after the description of the adult brain segmentation

algorithms.

Intensity-based segmentation is a common way to extract the brain tissue. Shanthi and

Kumar [107] propose to identify the brain and non-brain tissues using an histogram ana-

lysis. The use of T1-weighted axial MR images of adults has been chosen, because ac-

cording to the authors, out of all data in their database these MR sequences have shown

the best resolution. Balan et al. [15] expanded the histogram analysis method by ad-

ding binary mathematical morphology. This technique is based on the search of minima

which are positioned in the intensity between two local maxima in a histogram. The

background was removed using histogram partitioning. This partitioning was applied a

second time on the resulting images to extract the brain tissue. At this stage, most of the

brain tissue had been extracted. In order to finalise the results, the images are processed

by simple morphological operations such as erosion, connectivity analysis, dilation and

closing. Saha et al. [103] also applied histogram analysis for brain extraction. This

method is based on histogram feature analysis, which is based on a visual inspection

using the knowledge that the different regions of interest are distinct and, therefore, ea-

sily identifiable. In their brain extraction results, the CSF is not removed. Due to the

complex anatomical structure of infant MRI data, a histogram analysis technique alone

is not sufficient for accurate brain extraction. A more complex algorithm was propo-

sed by Somasundaram and Kalavathi [115], who presented a brain extraction algorithm

which is based on noise reduction by applying the mean filter, determining a primary

mask for brain tissue and refining this mask by using a erosion operator. They improved

their technique by adding 3D information to connect the multiple regions into a single

brain tissue volume [114].

Another attempt to extract the brain tissue was made using a watershed algorithm.

An example, is the algorithm proposed by Hahn and Peitgen [55] where the authors de-
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veloped a 3D watershed algorithm for brain segmentation. In order to avoid the problems

generated by intensity inhomogeneities and noise, the technique performs pre-flooding

where the basins are filled to a certain height. Segonne et al. [105] extended Hahn

and Peitgen’s [55] technique by combining the watershed with a deformable surface

technique to develop a robust skull-stripping approach. First, T1-weighted MRIs are

analysed to localise a single white matter voxel to create a global minimum in the white

matter. Then, the watershed algorithm is applied to 3D data to estimate the brain vo-

lume. At this stage, the algorithm generates a brain volume which includes most of the

brain tissue and is followed by the application of an atlas-based contour model to correct

the initial segmentation results. The final step is performed using a deformation-based

surface model. After testing the algorithm on a dataset of 43 subjects, the authors stated

that this method performs well even if the image is corrupted with noise. Rajagopalan

et al. [97] designed a technique that uses a 3D watershed for an initial extraction of the

brain tissue. In the second step, a parameter projection of T2-weighted to T1-weighted

MRI space was applied, on which the watershed algorithm was performed to extract the

final brain tissue volume. The authors’ aim is to focus on the use of T2-weighted MR

images. The watershed algorithm produced satisfactory results when used for brain ex-

traction in adult MRI datasets. The reason for this is the clear identification of the CSF

which surrounds the brain tissue. In infant brain MR images, the CSF surrounding the

brain tissue can be so small that, due to partial volumes and noise, it appears that the

skull is attached to the brain tissue.

Some of the well-established brain extraction methods have been embedded in software

tools such as BrainSuite [108], SPM8 [116], MRIcroN [99] or FMRIB Software Library

(FSL) [40] [112]. At this time, three state-of-the-art approaches outperform all the other

developed methods. These are: Brain Surface Extraction, Brain Extraction Tool and

Statistical Parametric Mapping, and they have been frequently used for comparison and

testing.

Brain Surface Extraction (BSE) [109] is one of the well-established BEA and is

integrated in the BrainSuite tool. BSE is an edge-based method which executes an ani-

sotropic diffusion filter, followed by a Marr and Hildreth edge detector. The final seg-

mentation is obtained by applying morphological operators to the edge map to enable

the removal of the non-brain tissue. Zhao et al. [134] modified this method by replacing

the edge detection step with a threshold and skeletonisation technique.

The second well-established BEA is embedded into the MRIcroN and FSL tool and

is called Brain Extraction Tool (BET) [113]. This method is based on estimating the

intensity threshold of the brain and non-brain regions, and it then determines the centre

of gravity of the brain volume. This is followed by the definition of an initial sphere,

which is based on the previously calculated centre of gravity. Finally, the technique
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deforms the initial sphere outwards to attach to the brain tissue boundaries. Lee et al.

[75] compared the BET and BSE by testing 20 datasets of T1-weighted MRIs. The

authors concluded that BSE is sensitive to the initial set of parameters. On the other

hand, the BET yielded high false positive and false negative measurements because the

technique was not able to eliminate all non-brain tissue such as the neck; furthermore,

some of the brain tissue was incorrectly removed.

The third well-known brain segmentation approach is called Statistical Parametric

Mapping (SPM) [46] and consists of registration, normalisation and segmentation steps.

Realigning and normalisation were performed to transform the volume into the Talairach

space [119]. As previously explained in Chapter 2, the segmentation extracts three re-

gions (GM, WM and CSF) and for each region a volume image is generated. SPM is the

only technique of these three which was not developed as a brain extraction approach in

the first place since this technique was designed for GM-WM-CSF tissue segmentation.

As SPM is one of the most popular tools to process medical brain images, an investiga-

tion was carried out on segmenting infant brain MRI using SPM. SPM does not include

a brain extraction algorithm, but to analyse its performance when used for infant data,

the white matter and grey matter results were combined in order to construct the brain

tissue volume.

The outcome of this investigation is described in Appendix A. The skull stripping

approaches developed for adult brain data rely on clear distinctions between brain tissue

and non-brain tissue, which are indicated by strong contrast and boundaries. This is not

the case in infant data and, therefore, these methods produce false segmentation when

applied to neonatal brain MR images.

With regard to infant data, many researchers developed probabilistic approaches where

a brain extraction algorithm is not required. However, a few researchers designed skull

stripping algorithms with the focus on processing infant brain data. The brain extrac-

tion from infant brain MR images presents greater challenges than the adult brain MRI

data. These challenges are, for example, the unclear boundaries between the brain tis-

sue and the non-brain tissue, the high level of noise and intensity inhomogeneities that

are present in infant MRI data. Only a few infant brain extraction methods have been

developed. One of these approaches was proposed by Chiverton et al. [33], who presen-

ted a brain extraction algorithm that first removes the background using region growing

and then applies parameter estimation to fit an intensity Gaussian Mixture Model to a

predefined histogram. A 2D mask is created by using thresholding and region growing.

The final segmentation is achieved using 3D morphological erosion and dilation opera-

tors and connectivity analysis. The results indicate a high level of errors when intensity

ranges of different tissues overlap. This causes under-segmentation due to incorrect

parameter estimation. Despotovic et al. [42] developed an approach that combines his-
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togram analysis, morphological operators and active contours. Various steps are based

on the combination of partial results obtained from T1 and T2-weighted MR images. As

a consequence, the algorithm relies on the quality of the registration which is used in the

pre-processing step. This algorithm is not suitable to address the intensity overlapping

between WM and GM, which are common in infant brain MRI data. Kobashi et al. [70]

used fuzzy rule-based active surface models. A surface model was achieved by connec-

ting triangles and by allowing the surface to be deformed. The positions of the triangles

were defined using fuzzy IF-THEN rules. The outcome revealed that small non-brain

tissue parts remain in the extracted region. Additionally, the technique has not excluded

the CSF from the segmented area. Mahapatra et al. [82] proposed a graph cut method

with the aim of incorporating prior shape information from a pre-constructed atlas. The

atlas is based on manually segmented datasets and is applied during the pre-processing

step to identify the threshold between the background and the brain tissue. In addition to

shape information, the gradient information is used during the segmentation process in

order to optimise the graph cut algorithm. The approach was tested on 20 T2-weighted

infant MRI data acquired with a 3T scanner and 77 T1-weighted adult MR images ac-

quired with a 1.5T scanner. The results indicate over-segmentation in regions with low

contrast and diffused contours.

The aim of this chapter is to present a novel skull stripping algorithm for infant brain

MR images. The next section introduces an overview on the structure of the proposed

technique. This is followed by a section on pre-processing, whose objective is to sim-

plify the brain segmentation process. Section 3.4 describes the process of identifying the

outer contour of the brain tissue in order to support the segmentation algorithm presented

in Section 3.5. Two post-processing steps are required to refine the segmentation results

and are presented in Section 3.6. Section 3.7 presents a numerical evaluation of the

proposed approach. A numerical comparison between the three well-established brain

extraction algorithms (BSE, BET and SPM) is presented in Appendix A. In the case of

SPM, the resulting volumes of GM and WM were combined into one volume to obtain

the skull stripping volume and then compared against the automatically segmentation re-

sults of the proposed approach. The outcome of this investigation demonstrates that the

methods developed for adult data show false segmentation due to remaining non-brain

tissue in the brain volume.
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3.2 Overview

In the previous section, the challenges related to the extraction of the brain tissue in in-

fant brain MRI data were outlined. Due to the large number of inconsistencies within

the brain area that are caused by noise, artefacts, unclear boundaries and intensity inho-

mogeneities, the brain extraction procedure is a complex task. This section outlines the

steps of the proposed brain extraction technique, which is composed of a mixture of 2D

and 3D algorithms.

The first step deals with the attenuation of the intensity inconsistencies within the brain

MR images, which arise during the image acquisition. This step is divided into two

phases. Firstly, the image is filtered to reduce noise while maintaining the edges of each

region. This has been solved using an anisotropic diffusion filter. The second part of the

contrast standardisation implies an intensity adjustment within a patient sequence. In

order to remove the intensity shifts between slices throughout the volume, a histogram

analysis was applied. Both pre-processing steps are necessary to simplify the following

segmentation process.

The contrast optimisation step is followed by the generation of a binary mask. Due

to the fact that the shape and size of the premature infants’ brain may vary, the binary

mask has to be generated for each patient individually. The mask that is constructed in

3D is created in three steps. The first step aims to reduce the partial volume effects bet-

ween the brain tissue and the skull and fat. In the second phase, small objects which are

not connected to the main brain region are removed. Finally, edge detection identifies

the outer boundaries of the brain tissues. This facilitates the removal of the CSF which

surrounds the main brain region. Before the RoI is segmented using a 3D region growing

algorithm, a seedpoint is automatically defined. At the same time, a threshold for each

individual image in the volume is calculated. This allows a more precise discrimination

between the brain and non-brain tissues. After the identification of the RoI, the final step

is applied to refine the outer edges.

Figure 3.1 presents an overview of the main components of the developed approach

and in the following sections each step of our developed approach is described in detail.

3.3 Data Pre-Processing

One challenge is generated by the inter-patient inconsistencies and intensity variations

throughout the patient volumes which is caused after converting the MR signals into

MR images. In MRI, the grey scale value attributed to a voxel depends on the relative
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Figure 3.1: An overview of the skull stripping algorithm.

T2 values in other voxels, and is therefore not absolute. This is a relative process in a

particular sequence or even within a single image and it is not similar across patients

or different scans over time. For this reason, the intensity is manually adjusted by the

clinical expert and this procedure is called windowing. The clinicians adjust the image

intensities through a visual examination and in turn this may generate intensity incon-

sistencies. The intensity differences with and without windowing can be observed in

Figure 3.2.

In order to avoid the user interaction in the proposed approach, the intensity range of

the volume is calculated and each image is then adjusted to the same range. In order to

address the noise and intensity variations, a two-step procedure was applied. The first

step addresses the noise reduction while preserving the edges in the images as described

in Section 3.3.1. The second step deals with the adjustment of intensity changes in all

slices of the dataset as presented in Section 3.3.2.
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Figure 3.2: Two images of the same patient. In the left image the intensity is manually adjusted,
while the intensity of the right image has not been adjusted.

3.3.1 Coherence Enhancing Diffusion Filter

MRI data is associated with noise artefacts which arise during the MRI acquisition. In

order to acquire the brain data from a newborn, the patient has to be scanned using a

high resolution, which leads to a high noise level and stronger partial volume effects

[48] [52]. In the presence of a considerable amount of noise, the detection of anatomi-

cal structures emerges as a difficult task. Especially in infant MRI data, the strength of

edges is substantially reduced and the level of noise and partial volume effects is high,

which leads to a computationally demanding segmentation.

An anisotropic diffusion filter [109] [134] can significantly improve the image quality by

removing the noise while preserving the edge details. The most common utilised filter

in brain segmentation is the Perona-Malik filter [93]. Most nonlinear diffusion filters use

a scale diffusivity and, therefore, remain isotropic. As a consequence, the information

of diffused contours and partial volume regions are weakened. An investigation was

performed by applying the Perona-Malik filter on our database. The outcome revealed

several limitations by demonstrating the disappearance of useful information. For this

reason, the Coherence Enhancing Diffusion Filter (CED) proposed by Weickert [128]

was investigated. This filter allows the removal of noise without eliminating any use-

ful information. Instead of using a scalar diffusion coefficient, this filter is guided by a

diffusion tensor, which allows to optimally adjust the diffusion process in different direc-

tions. In this way, weak edges are maintained in the image. For this reason, the images

are processed with the CED in order to facilitate the application of an edge detection

method at a later stage as indicated in Section 3.4.
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The CED algorithm is a noise reduction method in which a nonlinear diffusion filter

is controlled by a structure tensor. The anisotropic diffusion equation is mathematically

defined as follows:

δu

δt
= div(D ×5u) (3.1)

where u is the input image, t denotes the time, div the divergence operator,5u describes

the gradient of the image andD is the diffusion tensor. The diffusion tensorD is defined

as a function of the structure tensor Jρ, which is described as follows:

Jρ(5uρ) = Kρ ∗ (5uσ 5 uTσ ) (3.2)

where Kρ denotes the Gaussian kernel, ρ is the integration scale that controls the size of

the Gaussian Kernel Kρ is calculated and5uσ is the gradient of the Gaussian-smoothed

version of uσ. In order to enhance the coherent structure, the smoothing should be

performed along the coherence directions with a diffusivity λ. In m dimension, the

eigenvalues are chosen by designing D so that it has the same eigenvectors v1 and v2 as

Jρ:

λ1 = α, (3.3)

λ2 =

 α, if µ1 = µ2

α+ (1− α) exp
(

−C
(µ1−µ2)2m

)
else

(3.4)

where α is a small positive parameter α ∈ (0, 1) which defines the strength of the smoo-

thing along the direction of the corresponding eigenvectors and C is a constant that

influences the strength of the coherence. µ1 and µ2 are the corresponding eigenvalues of

the eigenvectors v1 and v2 from Jρ. The expression (µ1 − µ2) is a measure of the local

coherence.

The CED parameters were set to the following values: σ = 0.5, C = 1, α = 0.001.

By increasing the noise scale σ, a stronger blurring occurs, which leads to difficulties

when enhancing the contours. The integration scale parameter ρ controls the size of the

Gaussian Kernel Kρ and is usually set to a larger value than σ. The author has set the

variable ρ at 2,4 and 6 when investigating different types of images. A strong increase

of ρ leads to a strong flow-like character in the image, which may have an impact on the

segmentation procedure. The best results on the database of this study were obtained

when ρ = 4. Figure 3.3 displays an image where the CED algorithm was applied using

different time parameters. When applying a larger time step size t value, the image re-

veals some artefacts.
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Figure 3.3: The left image shows an example of the original MR image, the other images are
results after applying the CED filter using different diffusion parameters; second
image: t=1; third image: t=10.

Figure 3.4: A representation of the intensity distributions after the application of the coherence
enhancing diffusion filter using different diffusion times.

Figure 3.4 illustrates the intensity variations given by the use of the CED algorithm when

the diffusion time is varied as shown in Figure 3.3. According to this finding, the dif-

fusion time should be set high to smooth the image and enhance edges. However, after

further investigations, results have shown that due to partial volume effects important in-

formation is lost when the diffusion time is too large. An example is presented in Figure

3.6, which shows edge attenuation when t increases.
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Figure 3.5: Left image shows an example of the original MR image, the other images are the
results after applying the CED filter using different diffusion parameters; second
image: t=1; third image: t=5; fourth image: t=10.

In this study, the diffusion time was set to 1 since this setting has strongly reduced the

noise without the appearance of flow-like structures and the reduction of useful informa-

tion due to partial volume effects.

Figure 3.6: Results of the coherence enhancing diffusion using different diffusion times. The
coloured lines represent the intensity values in the x-direction of the region marked
in Figure 3.5, and the black line describes the changes in intensity values on the
original image. The larger the diffusion time value is set, the stronger the image is
smoothed with the risk of loosing information.
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3.3.2 Intensity Standardisation

Due to the characteristics of the MRI acquisition procedure, MR images include intensity

inconsistencies. One inconsistency is called bias field and consists of intensity inhomo-

geneities within each image in the volume. The second challenge is generated by the

intensity changes between one patient and another and also across a data sequence. The

aim of this step is to automatically adjust the intensities of the brain tissue into the same

range throughout a patient sequence. Thus, the algorithm sets the intensity of various

patients into the same grey level range.

As mentioned in Chapter 2, several researchers used histogram analysis to extract

a threshold for the brain tissue segmentation. In infant brain MRI the intensities of the

different regions tend to overlap, which complicates the segmentation process. This

challenge was described in Section 1.2.1. Additionally, the intensity range of the brain

tissue tends to change from one image to the next within the brain volume. This is caused

by a high and inconsistent distributed water content in the brain tissue. For this reason,

the focus of intensity standardisation is on locating the intensity range of the brain tissue

in each image of the volume.

In the first step, the background is removed by employing a thresholding procedure

where all background pixels are set to 0. This is obtained by localising all pixels with a

lower value than the local minima detected between 0 and 10,000. In the second step, the

intensity of the foreground region is automatically adjusted in each image individually.

The approximate region of the brain tissue is detected using histogram analysis. The his-

togram analysis is important since it allows the adjustment of the intensity ranges as well

as to receive useful information about the brain tissue, which will be further evaluated

throughout this study. In each histogram, one local maximum and two local minima of

the RoI are detected using a min-max search. By knowing the location of the RoI in the

histogram, the region is shifted into the same intensity range for each image. To avoid a

cut-off in the bright intensity, that area will be stretched out, so that a smooth transition

is still maintained. Figure 3.7 presents an example where an image is taken before and

after the intensity adjustment.

The approximate RoI lies between two local minima that are clearly visible in this his-

togram (see Figure 3.7). The intensity range in a MR image lies between 0 and 65,535.

The histogram also illustrates the removal of the background pixels which are set to 0

after performing a thresholding procedure. Due to the left shift of the brain tissue in-

tensity range, the distinction between brain tissue and CSF is strengthened which can be

observed towards the high intensity values in the histogram.
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Figure 3.7: Left: a sample and its associated histogram before applying the intensity adjustment;
the resulting image after the intensity adjustment was applied. The local maximum
is expected to represent the grey matter tissue, which is set to the middle of the entire
intensity range.

The histogram analysis is applied twice. During the first iteration, an approximation

of the brain tissue volume is computed from each image starting with the first image

in the sequence. In this way, the local maximum and minima are computed without

any associations with the calculated values in the previously processed image. Due to a

high amount of non-brain parts in the first images of the sequence, the estimation of the

maximum and minima values can be incorrect, which is illustrated in Figure 3.8. In the

second iteration, the analysis starts on the image with the largest number of brain tissue

pixels. This is done because the image with the largest brain tissue includes the smallest

number of non-brain tissue pixels and the intensity distribution facilitates the localisa-

tion of the brain tissue intensities. The measurement of the maximum and minima values

for the contiguous images is based on the previous calculations, which results in a more

precise detection of the RoI. This can be observed in Figure 3.8. The graph illustrates the

region of interest determined in the first iteration (displayed in blue), which was not ho-
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mogeneous and the detection of the brain tissue was not accurate in the first few images

of the sequence. The first iteration is important for two reasons. First, to find the image

with the largest brain tissue volume which is later used during the seedpoint detection.

Second, the initial measurement of the brain tissue volume in each image is used as a

guidance during the second iteration. The high number of non-brain tissues in the first

images of the volume is the reason for an incorrectly determined threshold. The adjust-

ment of the intensity does not mean that each region has the same intensity throughout

the volume but it implies that each region can be expected to have a normalised intensity

range. The problem which remains to be addressed is that the GM and WM still overlap

in their intensity ranges.

Figure 3.8: Improvements in the calculation of the brain tissue volume by comparing the results
of the first and the second histogram analysis. The blue line presents the results of the
first histogram analysis. The red line describes the outcome of the second histogram
analysis which is smoother and more precise because the calculation of each image
relies on the results obtained in the previous processed image in the volume.
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3.4 Mask Extraction

The purpose of generating a mask for each patient is to find the outer contours which

differentiate the brain tissue from the non-brain tissue. This idea has been applied by

many researchers [109] [33] [115] in order to improve the removal of the non-brain

tissue. In this study, the three steps illustrated in Figure 3.1 are required to generate the

final mask, and they are defined as follows:

1. Reduction of errors caused by partial volume effects

2. Removal of small disconnected objects

3. Edge detection

In the first stage, a primary mask of the brain region is constructed with the intention of

reducing the partial volume effects between brain and non-brain tissue. This is achieved

by bringing the region of interest into the foreground and the other regions into the

background using erosion and dilation operators with a kernel size of 20 voxels. In the

output image, the foreground region will be defined by different intensity values when

compared to the background region. The bias field can prevent the removal of all non-

brain tissues due to intensity changes across images. An estimation of the presence of

the bias field is obtained by applying the K-means algorithm (described in Equation

3.8) on each image using three clusters. The first class describes all background pixels,

the second class includes the entire grey matter tissue and the third class contains all

white matter pixels. In relation to the grey matter, in each image the detected foreground

is divided into three parts in the y-axis direction. The estimation of the bias field is

computed by comparing the percentage p of the grey matter existent in the top part of

the image gt against the grey matter pixels located in the bottom part of the image gb

using the following formula:

p =

(∑
N

∣∣∣∣ ∑ gt∑
ga
−
∑
gb∑
ga

∣∣∣∣
)
/N (3.5)

where ga denotes all grey matter pixels in the image and N is the number of images.

Note that the closer p is to zero, the less the volume is corrupted by intensity inhomo-

geneity. After performing a large number of experiments, it has been deduced that a

minor presence of intensity changes has no impact on the brain extraction algorithm.

Therefore, the volumes with a p higher than 0.1 are regarded as affected by bias field. In

cases where no intensity inhomogeneity is contained in the image, the image is proces-

sed individually. However, if the bias field is present, each part of the divided image is

processed by removing the remaining non-brain parts.
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For each image in the volume a histogram is calculated. In order to find the lower

grey intensity threshold, the smallest count of grey intensity values is taken where the

grey intensity is larger than the local minimum (calculated in Section 3.3.2). In this way,

the background is separated from the grey matter tissue. All pixels which have a lower

intensity than the calculated threshold are set as background.

The purpose of the second step is to remove regions such as the eyes. In T2-weighted

MRI data, the body parts such as the eyes and teeth appear as high intensity pixels.

Consequently, these areas are still maintained in the volume after histogram analysis.

Knowing that the brain tissue is always connected, this step focuses on removing all

disconnected regions using a fast 3D binary region growing algorithm. The automated

seedpoint detection executed in the second step is explained in Section 3.5.

In order to generate the final brain mask, the Marr and Hildreth edge detector [85] is

applied on the second mask, which was first modified by projecting the intensity va-

lues on the RoI, and enhancing them using Equation 3.9. The Marr and Hildreth edge

detector has proven successful when applied on adult brain extraction techniques [109]

and was considered in this study. Advantages of employing this edge detection are its

low computational cost and its affinity to return closed contours. Other edge detection

algorithms such as the Canny edge detection can be applied instead. However, in some

regions the edges produced by Canny are not closed and multiple edges can appear in the

same region due to the low resolution of the image, which can complicate the detection

of the correct anatomical boundaries.

The Marr-Hildreth edge detector first runs a Gaussian low pass filter followed by de-

tecting the boundaries using the Laplacian edge operator.

C(k) = ∇2(Gσ(q) ∗ I(k)) = ∇2Gσ(q) ∗ I(k) (3.6)

Gσ(q) =
1√
2πσ

exp−
‖q‖2

2σ2 (3.7)

where I is the input image, q indicates the point in the volume, ∇2 is the Laplacian

operator, * denotes the convolution operator and G describes the Gaussian kernel with

the variance σ, which was set to 2. When increasing the value of σ, the blurring kernel

gets wider and only strong edges such as those between the grey matter and the CSF,

remain in the image. In infant brain MR images, the CSF between the grey matter and

skull is not always clear and the boundaries are diffused. When the σ values are small,

then the narrow filters produce more edges in the images. The purpose of this final step

is to remove the large fluid areas that are located on the outside of the brain region. Due
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to partial volume effects and diffused boundaries, in some cases the edge detector may

not find the correct contours and it may find edges between the grey matter and the white

matter. This problem was also described by Shattuck et al. [109] and was overcome by

using morphological closing operation.

The images corresponding to each mask generation step are given in Figure 3.9, star-

ting with the original image followed by the first mask, second mask and third mask. In

the proposed algorithm, the generation of the binary mask is essential since it will be

used as a boundary stopping condition in the next procedure.

Figure 3.9: Images detailing each mask step, starting with the original image, followed by the
first mask, second mask and the final mask. The small bright part visible in the third
image is a leftover of the lacrimal glands.

3.5 Region of Interest Segmentation

The segmentation of the brain tissue is performed by applying a region growing algo-

rithm to the previous extracted information. The region growing method includes the

neighbourhood pixels which fit specific criteria. Figure 3.10 illustrates each component

needed for the segmentation of the brain tissue.

Figure 3.10: Overview of each step of the brain tissue segmentation using a region growing
algorithm.

The technique starts at an initialised pixel called seedpoint. During the intensity adjust-

ment, the seedpoint in the z-axis direction is determined by selecting the image with the
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largest connected region of the brain tissue. Within the image where the seedpoint z is

selected, the x and y coordinates are obtained by extracting the largest connected region

associated with the dominant intensity, which is retrieved as the local maximum in the

histogram. One pixel will be taken from the extracted region and defined as seedpoint

with the coordinate (x,y,z).

To extract the RoI, a region growing algorithm is applied on the MRI sequence. Pohle et

al. [94] proposed an adaptive region growing algorithm to segment regions in medical

images using two runs of the region growing. However, if particular conditions such as

shape differences or intensity changes within the region of interest are not well defined,

then the method does not work sufficiently well. Li et al. [78] proposed a different re-

gion growing method to address this problem. Therefore, an adaptive threshold, which is

based on the mean value and standard deviation of the RoI, is used to classify the current

pixel into brain tissue or non-brain tissue classes.

Different thresholds have been examined in this study such as the adaptive threshold

proposed by Li et al. [78] and those based on estimated tissue values. These thresholds

have generated erroneous segmentation in several volumes. It was concluded that the

use of one threshold for the entire volume is not as efficient as calculating thresholds

for each slice individually. The range of the intensity values in the RoI is still large. By

finding a threshold in each image, the segmentation for different parts of the volume can

be determined more precisely. During the seedpoint detection within the brain extraction

procedure, Gui et al. [52] successfully performed a K-means thresholding algorithm on

neonatal brain MR images. In the proposed approach the K-means algorithm is applied

to calculate the threshold values for each image. The K-means is a clustering technique

which iteratively partitions the data into a number of clusters (or classes). The clustering

process ends when no elements are exchanged between clusters and is mathematically

described as follows:

J =
K∑
j=1

∑
n∈Sj
|qn − µj |2 (3.8)

where the data points are clustered into K disjoint classes Sj each containing nj data

points, where qn is the observation and µj is the centroid of the data points in the cluster

Sj .

After several investigations, it became clear that three clusters (background, brain tissue

and CSF) were not sufficient for an accurate extraction. The best results were empiri-

cally obtained with a total of eight clusters, which were assigned to partition the intensity
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range in each image. The idea was to better divide the large brain tissue intensity range

in order to achieve a more precise threshold estimation for the extraction of the brain

tissue.

This detailed investigation was performed on a large database in order to examine

the variations of the K-means results while changing the cluster number. Figure 3.11

illustrates an example when using the K-Means with different number of clusters on a

brain MR image.

Figure 3.11: The histogram of one brain MR image illustrates the threshold results of the K-
Means algorithm when it was used with different number of clusters. The focus
lies on the threshold between the brain tissue and non-brain tissue (background
and CSF). The black arrows indicate that if a larger number of clusters is used then
the region of the brain tissue is larger. The green regions highlight the intensity
values which are classified as background or CSF.

The main focus lies on the two regions between the brain tissue and non-brain tissue

(background and CSF). If the number of clusters is too small, then the brain tissue is

classified as non-brain tissue. On the other hand, if the number of clusters is too large,
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then the non-brain tissue is segmented as brain-tissue. The optimal number of classes

was set to eight after a large investigation using the 1.5T neonatal database.

In this study, each cluster was initialised with a predefined value. Two clusters were

defined with the lowest and highest intensity values of the image representing the back-

ground and the brightest CSF region. The other six clusters were initialised with a value

extracted from the RoI intensity range, which was equally divided into six parts. During

the extraction procedure, the class, to which the current voxel is assigned, indicates if

the voxel is part of the brain or non-brain tissue.

For the extraction of the brain tissue, a region growing method with two thresholds as

stopping conditions is performed. The first threshold is employed for the identification

of the outer boundaries between RoI and CSF, in which case the final binary mask is uti-

lised. In this way, the expansion during the region growing process is restrained by the

mask area. The second threshold is used to differentiate the RoI and the non-brain tissue

within the volume by applying the previous calculated array of thresholds. In order to

assign the current voxel to a class in that array, the smallest distance between the current

voxel and the class centroids is evaluated.

3.6 Post-Processing

The investigation of the segmentation results concludes that two post-processing steps

are required to obtain accurate results. In the first step, the contours of the extracted brain

volume are refined so that some left over CSF regions can be removed. The second step

focuses on disconnecting and removing the lacrimal glands regions.

3.6.1 Refinement of the outer contours

The first task investigates the edges of the extracted brain tissue. In order to solve this

task, the image intensity is stretched to enhance the contrast between the brain tissue and

the CSF. The intensity expansion was achieved using the following formula:

v(x, y) = u(x, y)− ‖c− uLPF (x, y)‖ (3.9)

where u defines the resulting image from the region growing step and LPF describes

the Low Pass Filter. c is a parameter which is used to distinguish the white matter

from the CSF. Out of all those local minimum values which were acquired during the

histogram analysis from the intensity adjustment step in Section 3.3.2, the mean value

is calculated to initialise the parameter c. Then, the gradient magnitude of each contour

pixel is computed. In order to distinguish between fluid and non-fluid pixels, a threshold
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is defined as follows:

threshold = min(gm(e) > k∗)) e ∈ B (3.10)

where gm is the gradient magnitude of the edge values e,B defines the brain tissue mask

and k∗ is the threshold value of the Kapur entropy [67]. Several threshold algorithm such

as K-means, Otsu [92] and Kapur entropy were evaluated and as Figure 3.12 illustrate,

different values were obtained.

Figure 3.12: In this graph the threshold values of the Kapur, Otsu and K-means are shown.

In a first attempt, the K-means algorithm, which previously provided accurate results,

was used to compute the threshold. The outcome was insufficient because the threshold

value is too low and causes misclassification of the grey matter. The Otsu thresholding

algorithm, which will be introduced in Section 4.3, was also investigated in this step and

yielded similar results as the K-means. Comparing the outcome of the Kapur threshold

with the two previous methods, it can be concluded that the Kapur algorithm provided

the best threshold value for this task. In Figure 3.12, the threshold is calculated by using

the minimum of the gradient magnitude values which are larger than the Kapur entropy

threshold. The Kapur entropy threshold is calculated as follows:

k∗ = argmaxNk=1{lg (
k∑
i=1

pi)+lg (
L∑

i=k+1

pi)−
∑k
i=1 pi lg pi∑k
i=1 pi

−
∑L
i=k+1 pi lg pi∑L
i=k+1 pi

} (3.11)

where pi describes the probability of grey level i and L defines the total number of grey

levels. k∗ is the threshold that maximise the total entropy. Figure 3.13 illustrates the
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results before (A) and after (B) processing the inner edges to eliminate the remaining

CSF regions.

Figure 3.13: An example of an image to illustrate the results before (A) and after (B) processing
the inner edges of the brain. It can be observed that the brighter contour pixels in
(A), which represent fluid pixels, have been removed in (B).

3.6.2 Lacrimal glands removal

In infant brain MR images, the boundaries between the brain tissue and the lacrimal

glands are ambiguous. In addition, the lacrimal glands are composed of the same inten-

sity values as the brain tissue. Consequently, the region growing algorithm will include

these parts into the brain tissue volume as shown in Figure 3.15 (A). Figure 3.14 presents

an overview on the removal of the lacrimal glands.

Figure 3.14: Overview of the algorithm which removes the lacrimal glands.
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First, the positions of the eyes are determined by locating circular objects in the first

mask that is determined using the procedure explained in Section 3.4, using the follo-

wing expression:

R =
4π area

perimeter2
(3.12)

where the value R = 1 describes a perfect circle. After locating the eyes, the focus

lies on the region above them in order to identify the lacrimal glands. Therefore, two

volumes are extracted and each of them has a size of 100×100×15 voxels. The window

size parameter 100 is approximately twice the diameter of an infant eye which was mea-

sured using the entire database. The number of images was set to 15 in order to reduce

the processed volume of data because in the majority cases the lacrimal glands appear

only on seven to ten images and then the algorithm stops. The window size was expe-

rimentally chosen with the purpose to assure that the RoI includes all areas of interest.

By analysing the MRI data, we observed that the lacrimal glands are detached from the

brain in the first few images until they connect. In order to detach the connected parts, a

sharpening filter and an opening operator with a kernel of 2×2 is applied and followed

by a Canny edge detector (the scale parameter σ = 1, the low threshold = 0.01, and the

high threshold = 0.2). Finally, the voxels identified as lacrimal glands, are removed by

marking them as background voxels.

Figure 3.15: An example presenting results before (A) and after (B) the removal of the lacrimal
glands.

3.7 Experiments and Results

The proposed brain extraction technique, described in this chapter, has been tested on

fifteen T2-weighted MRI datasets (ten male and five female infants). In order to per-

form a comprehensive quantitative evaluation, fifteen datasets of our database (total of

1444 images) were manually segmented under the guidance and validation of a consul-

tant paediatric radiologist working in neonatal MRI in Temple Street Children Hospital,
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Dublin. The premature infants were born approximately three months early and the data

was acquired when the infant reached the term equivalent age. Detailed information on

the data and the manual segmentation is provided in Section 6.1.

This section presents an evaluation of the proposed skull stripping algorithm. In order

to determine the performance of the proposed method, the results of our skull stripping

algorithm are compared against the manually segmented data. Some results obtained

by the skull stripping algorithm are shown in Table 3.1 where each box presents images

of one patient, in which the left columns represent the automatic results and the right

columns illustrate the corresponding manually segmented images.

After a visual inspection of the results, it can be observed that the best performance is

obtained for the data with the lowest bias field corruption. A general observation for all

the tested datasets indicates that small cerebrospinal fluid parts appear within the brain

volume. Due to partial volume effects, the intensity of remaining CSF parts lies often

within the intensity range of the white matter and is, therefore, not distinguishable from

the brain tissue. A second observation determines that some results indicate the presence

of a hairline shape cut into the outer contour of the brain tissue across the volume or on

single images as shown in Figure 3.16 (the hairline shape cuts are marked with red ar-

rows).

Figure 3.16: A brain extraction result which indicates the presence of hairline shape cuts. These
regions are outlined with red arrows.
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Table 3.1: Images obtained after the skull stripping algorithm is applied. Each box represents
a different patient, in which the left columns represent the automatic results and the
right columns illustrate the corresponding manually segmented images.
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3.7.1 Evaluation Indices

The evaluation was performed by calculating three different indices such as Dice Simi-

larity Metric, False Positive and False Negative. The Dice Similarity Metric is a popular

comparison metric used for evaluation in many brain MRI segmentation approaches

[13] [23] [95] [101] [109] and it describes the similarity between the manually segmen-

ted data and the automatically segmented data. The last two calculations describe the

percentage of falsely segmented pixels as defined by [75] [101] [109].

1. The first set of tests is carried out by using the Dice Similarity Metric (DSM),

which describes the amount of overlap between the manually segmented data and

the automatically segmented data. The mathematical formula to calculate this

metric is described as follows:

DSM =
2|M1 ∩M2|
|M1|+ |M2|

, (3.13)

where M1 is the automatically segmented volume and M2 is the manually seg-

mented volume. |M1| denotes the number of voxels with the value 1 in the binary

volume M1.

2. The over-segmentation is calculated using the false positive rate as defined by

[101]. This formula calculates the percentage of voxels which were identified

as a part of the RoI but does not belong to the RoI. The false positive rate was

calculated as follows:

FP =
|M1 \M2|
|M2|

(3.14)

where |M1 \M2| =
∑

(x,y) f(M1(x, y) = 1 && M2(x, y) = 0) where (x, y)

are the pixel coordinates, f(a) =

{
1 if a = true

0 if a = false
, M1 is the automatically

segmented volume and M2 is the manually segmented volume, |M2| denotes the

number of voxels with the value 1 in the binary volume M2.

3. The under-segmentation is calculated using the false negative rate as defined by

[101]. This formula calculates the percentage of voxels which were not identi-

fied as part of the RoI but would belong to the RoI. The false negative rate was

calculated as follows:

FN =
|M2 \M1|
|M2|

(3.15)

where |M1 \M2| =
∑

(x,y) f(M1(x, y) = 1 && M2(x, y) = 0)

and f(a) =

{
1 if a = true

0 if a = false
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3.7.2 Numerical Evaluation

Figure 3.17 gives an overview on the numerical results. A database of 15 patients (with

a total of 1444 images) was manually marked under the guidance and validation by one

clinical expert. Figure 3.17 displays the dice similarity measurements for each subject.

The Dice Similarity Metric varies between 95% to 96.5% when the skull stripping algo-

rithm was applied to data with low bias field corruption. The similarity measurements

obtained from bias field corrupted data varies between 93.4% to 95%.

Figure 3.17: Similarity Measurements of the brain extraction algorithm using Dice Similarity
Metric.

The average result of the Dice Similarity Metric is 95.4%. The skull stripping algorithm

was optimised so that the partial volume effect and the bias field corruption have a minor

influence on the brain extraction approach. By comparing these results to other develo-

ped infant brain extraction techniques, Chiverton et al. [33] obtained a DSM between

89% to 93% while Despotovic et al. [42] presented a DSM of 90%. Mahapatra et al.

[82] stated a DSM of 98.9% similarity. During their experimental evaluation their me-

thod was compared with two well-established techniques, BET and BSE. They obtained

a DSM of 96.1% for BET and 95.1% for BSE. A comparison of these two techniques

was performed on our database and resulted in an average DSM of 87.94% (BET) and

87.67% (BSE). The experimental results obtained from our investigation are presented

in Appendix A. Comparing the BET and BSE results obtained by Mahapatra et al. and

the results obtained in our study, nearly ten percent difference was observed between

these two sets of results. These variations can be explained by the use of data acquired

with scanners with different magnet strength (3T MRI Mahapatra et al. and 1.5T data in

our study).

Figure 3.18 presents the over- and under-segmentation measurements. The average false

positive rate is 4.69% and the false negative rate is 4.48%. To better understand the error
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rate results, a global error was calculated, which demonstrates the error rate when the

segmented brain volume surface is one pixel smaller than the manual segmentation. Due

to the large surface of the brain tissue, the brain volume shows an error rate of 7.83%.

Figure 3.18: False positive and false negative measurements.

It can be observed that the datasets with stronger bias field corruption present larger

number of false positive voxels. This is the consequence of some CSF parts lying in

the intensity range of the white matter and, therefore, the algorithm has difficulties in

distinguishing between the white matter and CSF in those regions. The remaining CSF

voxels inside the brain tissue volume are often caused by PVE, which can be difficult to

classify, even when using a visual examination.

In general, the false negative measurements reflect missing brain tissues in the segmen-

ted volume, such as the mentioned hairline shape areas. Additionally, for images of some

patients (patients 4, 6, 11, 12 and 13) the brainstem is missing. This happens because

some brain tissue volumes consists of darker, low intensity values and the brainstem is

assigned as part of the background. Since the brainstem is not a relevant feature for this

clinical study, no further investigation is considered to address this issue.

3.8 Conclusions

This chapter proposed a novel, automatic brain extraction algorithm for infant MRI data.

The skull stripping method has overcome several challenges. The image quality was im-

proved by reducing the noise level and adjusting the intensity inconsistencies across the

volume. In order to minimise the influence of the partial volume effects between the

brain and the non-brain tissues, a mask of the RoI was generated. For the segmenta-

tion of the brain tissue, a seedpoint and multiple thresholds are automatically calculated.
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Two post-processing steps are required to refine the segmented data. A number of ex-

periments indicate that the algorithm shows robustness to image quality, partial volume

effects and intensity inhomogeneities.

The brain extraction method is the first part of the white matter segmentation fra-

mework. In order to facilitate the white matter segmentation, the bias field has to be

corrected and a novel technique is presented in the next chapter.
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Chapter 4

Bias Field Correction

4.1 Introduction

The most challenging artefact in MR images is the bias field which can be described as

a low frequency multiplicative signal arising from the inhomogeneity of the magnetic

field during the MR acquisition. The bias field causes a slow varying shading distortion

in the MRI within the same tissue. An example of this artefact is illustrated in Figure

4.1. In the left image, the bottom of the brain tissue is darker than the top, while in the

right image the bottom is brighter than the top. The process related to the removal of

these intensity inhomogeneities is called bias field correction.

Figure 4.1: Two examples from different patients that illustrate the intensity changes across the
brain tissue. These intensity inhomogeneities have a severe effect on the segmenta-
tion outcome.

The intensity inhomogeneities have a severe effect on the results of the segmentation

techniques. The model, which is commonly used to describe corrupted data, is mathe-
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matically defined as follows:

v = u b+ n (4.1)

where v denotes the corrupted image, u represents the true intensity image, b describes

the bias field and n indicates the additive noise. Numerous methods [20] [124] have

been proposed to correct the intensity non-uniformity and these can be divided into two

groups. The prospective correction methods deal with the MR signal received from the

scanner during the acquisition, while the retrospective approaches process the data after

the signal has been acquired and reconstructed into MR images. The advantage of the

prospective methods is that the information used for correction is closely related to the

problem. A disadvantage is that in many cases additional scans are needed. In this study,

the data acquisition had been completed, therefore, the prospective methods are beyond

the scope of this study and will not be further discussed.

The retrospective methods have been classified into four main categories [124]: fil-

tering, surface fitting, segmentation and histogram analysis.

Filtering: The earliest retrospective techniques [25] [35] for bias field correction are

based on low pass filtering. These methods assume that the image is composed of high

frequency information and the bias field is generated by low frequency signals. For this

reason, the intensity non-uniformity can be separated and corrected using low pass fil-

tering. An advantage is that this technique is fast. Axel et al. [12] proposed a fast and

simple correction algorithm called Homomorphic Unsharp Masking (HUM). The algo-

rithm applies a 2D low pass filter LPF on the observed image v(x). The correction is

obtained by dividing the intensity values of the observed image with the intensity values

of the LPF image. In order to achieve a correction in the appropriate intensity range,

the resulting image is multiplied by a constant value c representing the mean or median

of the image. The correction technique is mathematically expressed as follows:

u(x) =
v(x)

b(x)
= c

v(x)

LPF (v(x))
(4.2)

A disadvantage is that this method considers no intensity overlapping between different

regions. Given that this is usually not the case, the filtering process generates new ar-

tefacts [64]. An improved low pass filtering can be achieved by combining the filtering

process with a segmentation algorithm.

Surface Fitting: In [83] [74], a parametric surface is constructed from selected image

features which contain information about the intensity of the dominant region. The re-

sulting surface represents the bias field. A disadvantage of the surface fitting is that

the method depends on the selection of the feature pixels. Secondly, as the correction
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assumes one region in the image, the region has to be large and uniformly distributed

across the entire image. Due to these disadvantages, the surface fitting is not commonly

applied for brain MRI processing and, therefore, these methods are not analysed in this

thesis.

Segmentation: The brain segmentation algorithms and bias field correction methods

rely on each other. A precise segmentation makes the intensity inhomogeneity correction

insignificant, whereas on the other hand the achievement of complete segmentation re-

sults depends on the accuracy of the pre-processing steps. In this regard, inhomogeneity

correction algorithms and segmentation techniques are merged so that both methods be-

nefit from each other and achieve the best results. To this end, statistical methods are

employed to merge the segmentation and the bias field correction algorithms. The two

most common methods are the Expectation-Maximization (EM) [53] [76] [8] and Fuzzy

C-Means (FCM) [1]. These procedures iteratively correct the intensity artefacts while

segmenting the required regions. A disadvantage of both methods is that these tech-

niques are computationally expensive. The EM techniques calculate probability values

based on the intensity distribution of labeled voxels. The maximum-likelihood (ML)

[76] or the Maximum A Posteriori (MAP) [125] criterion are commonly implemented

within EM. The Expectation step calculates the tissue probabilities when assuming the

bias field is known while the Maximization step computes the updated set of parameters.

Wells et al. [125] proposed the first EM segmentation with an embedded bias field esti-

mation. The algorithm uses a finite Gaussian Mixture Model and an MAP. Leemput et

al. [76] proposed an Expectation/Conditional Maximization (ECM) algorithm in which

a normal distribution model describes each tissue class. The bias field is calculated as a

linear combination of smooth fourth-order polynomial basis functions. In order to im-

prove the EM calculations, a brain atlas with a prior probability map for each tissue class

is integrated. Guillmaud et al. [53] modified the EM so it replaces the distribution of

each class by a uniform probability density function. In general, in an EM algorithm, the

initialisation step remains critical. As mentioned in Chapter 2, the outcome of an EM

technique can be improved by the influence of a brain atlas which implements a priori

probability map for each tissue class.

The Fuzzy C-Means (FCM) method is a soft classification algorithm which allows voxels

to be classified into multiple classes. This technique modifies the object function to

adapt to intensity inhomogeneities. A modified FCM (MFCM) technique was proposed

by Ahmed et al. [1], which segments adult MRI data into three classes (background,

white matter and grey matter). In order to improve the general FCM, two components

were added. The first component is a regulator which includes the spatial coherence of

the tissue classes and enables the class membership of each voxel to be influenced by the

corresponding neighbourhood voxels. This constraint term was optimised using the La-
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grange multipliers technique. The second component optimises an additional parameter

which corrects the bias field. This method was applied on our database and results are

shown in Figure 4.13 in Section 4.6.

Histogram: In histogram-based approaches, the information required for bias field cor-

rection is extracted from the histogram. The advantage is that these methods need little

or no initialisation and can, therefore, be applied to a large range of different images.

A well-known histogram-based correction method is the nonparametric nonuniformity

normalization (N3) proposed by Sled at al. [111]. The correction is achieved by fin-

ding a smooth multiplicative field which maximises the high frequency of the intensity

distribution of the histogram of the ideal image. The histogram of the ideal image is ite-

ratively approximated from the current histogram by estimating a parametric bias field

with a histogram sharpening function. A disadvantage of this method is that, if the inten-

sity variations are stronger than the contrast between the brain tissues, the N3 algorithm

results are not precise [90] [64]. The reason for this is the sharpening function which

prevents a good approximation of the histogram from the ideal image. Salvado et al.

[104] proposed a correction technique for adult brain MR images using a Local Entropy

Minimization with a bicubic spline model. The algorithm called LEMS approximates

the initial bias field using a fourth-order polynomial function. The bias field is then mo-

delled as a bicubic spline and is optimised so that the entropy of the image is minimised.

A disadvantage of this method is the long processing time. This technique has been tes-

ted on our database and results are presented in Section 4.6.

The aim of this Chapter is to evaluate the issues generated by the bias field corrup-

tion and to analyse the most common algorithms that are applied to remove the bias field

in the neonatal brain MR images. Following an investigation on the performance of the

technique proposed by Ahmed et al. [1] and the approach developed by Salvado et al.

[104], the outcome revealed that both methods failed to correct the bias field corruption

when applied to our database. For this reason, it was decided that the filtering tech-

nique should be further investigated to improve the bias field correction. Our database

is composed of data with a low contrast between tissue classes and high intensity inho-

mogeneities. This combination presents a great challenge and the proposed algorithm

performs a pre-segmentation of the brain tissue before applying low pass filtering. The

next section introduces an overview on the structure of the developed technique.
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4.2 Overview

Regarding the bias field corruption, a difficult challenge in infant brain data is given

by the additional inconsistencies in the white matter tissue, which arise due to an inho-

mogeneous distribution of the water content in the tissue [52]. The previous described

algorithms were developed for adult brain segmentation and they fail in distinguishing

between grey and white matter in infant brain MRI. However, the key problem for bias

field correction is to extract the intensity inhomogeneities within each region. In the

experimental section of this chapter, results for bias field correction are illustrated. The

idea behind the proposed bias field correction algorithm is, first, to partition the brain

tissue into grey and white matter regions, followed by the extraction of the intensity in-

homogeneities within each region and, finally, correct the image. Figure 4.2 presents an

overview of the main components of the developed approach.

Figure 4.2: The overview of the bias field correction technique.

The bias field correction technique proposed in this study starts by dealing with the atte-

nuation of the intensity signal within the brain images. The first step adjusts the intensity

within the volume, using histogram analysis, while the second step reduces the noise by

applying an anisotropic diffusion filter. This is followed by enhancing the contrast to im-

prove the identification of the grey matter and the white matter regions. The use of a low

pass filter across all brain tissues has resulted in the generation of additional artefacts

and the disappearance of low contrast contours. For this reason, the proposed technique

performs a pre-segmentation of the white matter and the grey matter. The two regions

are estimated by segmenting the brain tissue using an Otsu thresholding algorithm. In

order to reduce the influence of the partial volumes, the thresholding results undergo a
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probabilistic calculation. In order to obtain a bias field in which the intensity variations

across the image are eliminated, a specific value for each tissue class is computed. Ba-

sed on the tissue classes and their corresponding values, a intensity map is computed

for each region. The two intensity maps for grey matter and white matter are merged to

form the image on which the bias field is determined by applying a low pass filter. In

order to achieve accurate results, the technique can only be applied on data in which all

non-brain tissues have been removed.

4.3 Data Pre-Segmentation

In the data pre-processing step, a histogram analysis is performed, which is similar to the

algorithm presented in Section 3.3 but with a different focus. The intensity adjustment

in the skull stripping method addressed first the challenge related to the identification of

the brain tissue and, subsequently, to correct the intensity values of the region of interest

into the same intensity range. Additionally, in the skull stripping intensity standardisa-

tion step, the high values were stretched out, so that a smooth transition is maintained.

At this stage, the non-brain tissue had been removed, which facilitates the identification

of the intensity distribution of the brain tissue. The Coherence Enhancing Diffusion filter

proposed by Weickert [128] has previously been used and explained in detail in Section

3.3. The contrast enhancement calculation was discussed in Section 3.6.

An investigation was performed by applying a low pass filter across the brain tissue. The

results indicated the appearance of new artefacts and the disappearance of low contrast

contours between the grey matter and the white matter. For this reason, it was decided

that in the proposed technique a pre-segmentation of the white matter and grey matter is

necessary.

The segmentation of the two regions was achieved by applying an Otsu thresholding

[92] algorithm. The Otsu technique provided accurate results when applied to neonatal

brain MRI data during the brain extraction process [52].

In this step, the Otsu thresholding algorithm was applied after a comprehensive com-

parison between the K-means and Otsu techniques on eighteen datasets of this study.

The Otsu approach has provided better and more robust results than the K-means me-

thod when dealing with the bias field corruption and intensity variations. During this

investigation it has been observed that the K-means algorithm performed well when the

number of clusters were manually adjusted for each patient. This manual interference

was dependent on the intensity variations and on the strength of the contrast in the MRI

data. The Otsu method is a parameterless global thresholding technique which calcu-

lates a threshold value by assuming the presence of two distributions in an image. This
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means that the optimal threshold is calculated by separating the two classes so that their

combined spread is minimal. Therefore, the optimal threshold t∗ is computed when the

variance between σ2B is maximised. This is mathematically defined as:

σ2B(t∗) = argmax
[
p0 p1 (µ1 − µ0)2

]
(4.3)

where p0, p1 denote the class probabilities and µ0, µ1 describe the class means. Due to

the early stage of brain development, the contrast between grey matter and white matter

can overlap, which results in erroneous classifications. For this reason, the Otsu thre-

shold algorithm is applied three times on different parts of the brain tissue, which results

in four classified regions as illustrated in Figure 4.3. Performing the Otsu algorithm

three times provides a stronger focus on the partial volume voxels, diffused contours

and intensity variations within regions. One of these classified regions defines the white

matter and the second one the grey matter. The two remaining classes consists of partial

volume voxels.

Experimentally, we concluded that after the first application of the Otsu algorithm, the

class corresponding to high intensity values is composed of white matter pixels only.

Hence, the next Otsu thresholding is carried out on the class with low intensity values,

which separates the grey matter from the partial volume pixels. For a more precise

GM/WM identification, the partial volume class is divided into two classes using the

Otsu algorithm for the third time. Figure 4.3 presents an overview of the proposed me-

thod for grey matter and white matter estimation.

After a global segmentation, Xue et al. [132] split the brain image into several parts to

deal with the white matter intensity variations. This idea was also used in this classi-

fication algorithm to receive a good estimation of the white matter and grey matter. In

this study, each brain tissue volume in each image is divided into 18 parts. The 18 parts

allow the image to be segmented locally which improves the separation of grey matter

and white matter without the negative influence of the bias field corruption. In addition,

the size of each region permits the inclusion of both regions (GM/WM) which prevents

misclassifications. The previously described Otsu thresholding is performed on each

part individually. In this way, local intensity variations can be incorporated. The divi-

sion of 18 sections proved to be optimal for this task. The outcome difference between

performing the Otsu thresholding globally or locally is illustrated in Figure 4.4.

A probability judgment is employed to classify the two classes of the partial volume

voxels into the grey matter and the white matter classes. Thus, two probability measure-

ments are computed, the grey matter and the white matter, and each of which is compared
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Figure 4.3: An overview of the Otsu decision tree that applies the Otsu algorithm three times.

to the partial volume pixels. The probability judgment is mathematically expressed as

follows:

probGM =

∑
qcl=4∑

qcl=2 +
∑
qcl=3

probWM =

∑
qcl=1∑

qcl=2 +
∑
qcl=3

(4.4)

where qcl is the number of pixels in the class cl. The assumption is that class 4 describes

the grey matter, class 1 defines the white matter and class 2 and 3 indicates the partial

volume voxels and diffused contours. The probability calculation probGM indicates

the number of grey matter pixels compared to the number of partial volume pixels. The

second probability probWM computes the ratio between white matter pixels and partial

volume pixels.

In order to classify the partial volume classes, two case scenarios are taken into account:

1. probGM> probWM : A higher percentage of grey matter pixels indicates a dark

region in the image, in which the partial volume pixels of classes (WM-GM) and

(GM-WM) are categorised into the white matter class.

2. probGM ≤ probWM : If the percentage of grey matter pixels is lower than or

equal to the percentage of the white matter pixels, it means that this area in the

image is brighter. In this case, class (GM-WM) is classified as grey matter and

class (WM-GM) is defined as white matter.
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Figure 4.4 presents an example obtained after applying the Otsu method. The left image

represents the result if Otsu is applied to the entire image and the middle sample is the

results after applying Otsu on 18 parts of the image. The right image presents the final

Otsu results. The bias field correction algorithm does not require the achievement of a

complete segmentation. At this stage, the two regions have been separated up to a point

where the intensity variations can be precisely computed.

Figure 4.4: Results obtained after applying the multiple Otsu algorithm. (Left) The technique
was applied on the entire image. (Right) The result of the algorithm which was
applied individually on small segments of the image. The red area represents class
GM, and the dark blue illustrates the WM class. The partial volumes are represented
in bright blue and yellow regions. The right image is an example of the final seg-
mentation obtained by the multiple Otsu technique. The dark blue area represents
an estimation of the white matter region and the grey matter is displayed in brighter
blue.

4.4 Intensity Maps

At this point the images consist of two main regions; grey matter and white matter. In

the proposed bias field correction algorithm, it is important to differentiate between the

grey and white matter because each region consists of different intensity ranges. An

attempt of applying the bias field correction algorithm to one global region resulted in

a false correction and the borders between grey and white matter were unclear. As a

consequence, two maps (GM and WM) are computed and then reconstructed into one

resulting image. This allows the processing of each region in its intensity range without

the influence of the other region. These maps reflect the intensity variations within each

region.

The measurements of intensity variations are based on an estimated value for each pro-

cessed region. Brinkmann et al. [25] investigated the differences on brain MRI after
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applying the median or the mean filtering. Their results show that for human brain MR

images the mean filtering outperformed the median filtering. An investigation on our da-

tabase using both filtering techniques provided no significant differences in the results.

In this regard, two estimated tissue values, one for grey matter and one for white mat-

ter, are computed by applying the mean filtering on the intensity values of each tissue

region. For each segmented tissue region, the difference between the pixels and their

corresponding estimated tissue value is calculated. At this stage, the two tissue types

have been processed individually and the results are presented in two individual images,

which are referred to as intensity maps. In order to receive a global interpretation of the

intensity variations, the two intensity maps are merged into one image by summing both

images. Figure 4.5 presents an example of the two computed intensity maps and the

reconstructed final intensity map. It can be observed that in the bottom of the image the

intensity values change within both regions which appear because the images are locally

processed. These changes have no effect on the correction process because the further

processing steps smooth these regions before the correction of the bias field.

Figure 4.5: Left: The intensity map computed from the grey matter region; Middle: The inten-
sity map computed of the white matter region; Right: The combination of the two
intensity maps.

4.5 Low Pass Filter

The aim of the low pass filter [47] is to suppress the high frequencies and to maintain

low frequencies unchanged. As mentioned in Section 4.1, the filtering-based bias field

correction algorithms assume that the image is constructed of high frequency informa-

tion, whereas the bias field is composed of low frequency signals. In this regard, the

suppression of high frequencies permits the isolation of the intensity changes across the

brain MR images.
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The low pass filtering process is based on transforming an image into the Fourier do-

main, followed by multiplying with a filter function and with a retransformation into the

spatial domain using the inverse Fourier transformation. In this study, the Fourier trans-

formation is applied to the intensity map image described in the previous section and the

Butterworth low pass filter is used as the filter function.

The 2D discrete Fourier transform F (u, v) is defined as follows:

F (m,w) =
M−1∑
x=0

W−1∑
y=0

v(x, y) exp−j2π(mx/M+wy/W ) (4.5)

where i represents the input image at the coordinate (x, y) , M and W denote the image

size, 0 ≤ m ≤M − 1 and 0 ≤ w ≤W − 1.

The Butterworth Low Pass Filter (BLPF) is mathematically described as follows:

H(u, v) =
1

1 +
[
D(m,w)
D0

]2c (4.6)

where D0 describes the cut-off frequency, c defines the order of the filter and D(m,w)

is the distance from the origin. The Butterworth filter has a smooth transfer function

without any discontinuity. In our study, D0 was initialised with 1% of the image width

and in order to reduce the ring artefact, c was set to 1. Some results of the low pass

filter, including different parameter initialisation, are illustrated in Figure 4.7, in which

the Butterworth low pass filter is displayed in the third row.

In order to obtain the bias field in the spatial domain, the result image R(x, y) consists

of the multiplication between F (m,w) and H(m,w), and it has to be retransformed

using the inverse discrete Fourier transform (idFt). This is mathematically expressed as

follows:

b(m,w) =
1

MW

M−1∑
x=0

W−1∑
y=0

R(x, y) exp−j2π(mx/M+wy/W ) (4.7)

The filtered image represents the bias field. In order to correct the intensity inhomo-

geneities, the bias field b(x, y) image values are first inverted, then each pixel value is

divided by the mean value of the image and finally, this image is multiplied with the

image v(x, y) on which the noise was reduced using the coherence enhancing diffusion

filter.

u(x, y) = v(x, y) b(x, y) (4.8)
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Figure 4.6 presents an example of the computed bias field. The left image represents an

example of a bias field image, the image in the middle is the image before correction and

the right image is the bias field corrected image.

Figure 4.6: Left image is an example of the calculated bias field, the middle image is the original
image and the right image is an example after correcting the bias field variations.

The decision to apply the Butterworth low pass filter was made after the investigation

of three low pass filters (Ideal low pass filter; Gaussian low pass filter and Butterworth

low pass filter). Mathematically, the Ideal Low Pass Filter (ILPF) and the Gaussian Low

Pass Filter (GLPF) are described as follows:

ILPF : H(m,w) =

{
1 ifD(m,w) ≤ D0

0 ifD(m,w) > D0

(4.9)

GLPF : H(m,w) = e−D
2(m,w)/2σ2

(4.10)

where σ = D0. A drawback of the ideal low pass filter is a ringing effect which occurs

along the edges of the filtered spatial domain image [47]. The Gaussian low pass filter

and the Butterworth low pass filter have provided similar results. In our study, apart

from the bias field, the intensity values of the white matter are inconsistent due to an

inhomogeneous water content in the tissue. GLPF is known for smoothing the image

more effectively than other filters because the intensity curve in the frequency domain

and the spatial domain are the same [47]. However, BLPF has the advantage that it

reduces this local intensity inconsistency stronger than the GLPF. A few samples of the

low pass filter results are presented in Figure 4.7. The first row presents the results of

the ILPF, the second row shows GLPF results and the third row the BLPF results. In the

first column the D0 was set to 0.5% of the image size, in the second column D0 was set

to 1% of the image size and in the right column the D0 was set to 5% of the image size.
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Figure 4.7: The first row presents the results of the ILPF, the second row the GLPF and the third
row the BLPF. In the first column D0 was set to 0.5% of the image width, in the
second column D0 was set to 1% of the image width and in the right column the D0

was set to 5% of the image width.

After examining these images no visual differentiation between GLPF and BLPF could

be observed. When comparing its corresponding intensity distribution in an histogram,

the Butterworth low pass filter yielded the best results and is, therefore, used in this

study. Figure 4.8 presents the comparison of the results obtained by the Butterworth

low pass filter and the Gaussian low pass filter. Visually, the images do not reveal any

differences, however when the intensity distribution is compared, then minor differences

can be observed.
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Figure 4.8: Two histogram examples where each presents the intensity distribution after using
the BLPF and GLPF.

The results obtained by the proposed method are presented in the next section, as

well as, a comparison against two other techniques; histogram-based and segmentation-

based methods.

4.6 Experiments and Results

The bias field correction algorithm discussed in the previous sections of this chapter has

been applied to our database. The outcome revealed that for each patient the intensity

inhomogeneities were corrected while the edge information was retained. The tests on

our database were performed on images with different strengths of bias field corruption,
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and show accurate results. Figure 4.9 gives an example that presents images before and

after the application of the bias field correction algorithm. Their corresponding histo-

grams are displayed beside each image and they illustrate the changes in the intensity

distribution. It can be observed that the intensity variations have been corrected without

attenuating the edge information or inducing additional artefacts.

Figure 4.9: The top left image is the original image with the corresponding histogram at the
right side; the bottom left image is the output after applying the bias field correction
algorithm with its corresponding histogram at the right side.

Figure 4.10 gives an other example that shows the images before and after performing

the bias field correction algorithm, while focusing on the local changes within the white

matter region. Their corresponding histograms illustrate the intensity changes in the se-

lected areas and demonstrate an accurate correction.
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Figure 4.10: Examples showing the intensity values in selected areas of the white matter before
and after the bias field correction. Their corresponding histograms illustrate the
intensity values in the selected regions.

Figure 4.11 displays three examples of different patients on which the bias field cor-

rection algorithm was applied. Similar to the example in Figure 4.9, the three columns

illustrate a high performance in correcting the bias field that is achieved by the proposed

method. The influence of a strong bias field on the skull stripping algorithm can result in

small remaining CSF parts in the brain tissue volume. Given that the proposed bias field

correction method segments the brain tissue into two regions, the high intensity values

of small remaining CSF parts that are attached to the grey matter tissue are classified

into the white matter tissue. An example of this occurrence is illustrated in the second

column of Figure 4.11.
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Figure 4.11: Results of the bias field correction algorithm. The top images are the original
images, whereas the bottom images are the corrected images.

Given that the proposed method is based on filtering, the technique is less computatio-

nally demanding than the segmentation or histogram-based approaches. For this reason,

the method proposes an attractive way to correct intensity variations.

4.6.1 Comparison to other algorithms

In order to demonstrate the effectiveness of other types of bias field correction algo-

rithms, an investigation was performed on two techniques that are categorised into his-

togram and segmentation based methods. In order to perform a fair comparison, their

implementation was used during this evaluation.

The first algorithm analysed is called LEMS and was proposed by Salvado et al. [104].

LEMS is a histogram-based technique and utilises a Local Entropy Minimization. Ad-

ditional information is presented in Section 4.1. The algorithm provided by the authors

functions in a stepwise manner, which allows the user to adjust its parameters to obtain

the optimal results. LEMS was developed to adjust the bias field in the original image

without pre-segmentation. As it can be observed in Figure 4.12, this approach has two

disadvantages.
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Figure 4.12: Examples showing the results obtained by the bias field correction algorithm called
LEMS proposed by Salvado et al. The top images are the original images, whereas
the bottom images are the corrected images.

Firstly, the edge information associated with the deep grey matter is weakened, which

can be observed in the result images shown in the first and second columns. In the third

column, it can be observed that the intensity values of the CSF within ventricles were

falsely corrected and new artefacts appeared. These results can be explained by the fact

that the histogram-based entropy measurement algorithm is prone to local minima loca-

lisation errors and sensitive to regions with low contrast. In addition, the authors state

that the performance is degrading when the noise is descreased. Secondly, LEMS is

computationally expensive and requires 20 minutes to process one image. In compari-

son, the proposed method processed the brain volume of a patient in 52 seconds.

The second comparison method is the bias field correction algorithm proposed by Ah-

med et al. [1]. This technique is categorised as a segmentation-based algorithm that uses

a modified Fuzzy C-Means algorithm. The algorithm is explained in detail in Section

4.1. During the evaluation of the technique, the parameters were adjusted in order to
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achieve the best results. The algorithm was first tested on the images obtained after skull

stripping. As it can be observed in Figure 4.13, the structure in the brain tissue is unclear

and the intensity values of the grey matter and white matter are adjusted into the same

intensity range. A second test was performed, in which the algorithm was applied on the

original image. The result image in the third column indicates that no useful information

within the brain tissue remains. This is caused by the low contrast differentiation bet-

ween the GM and WM in conjunction with the large contrast between brain tissue and

CSF which hinders the differentiation of GM and WM tissue.

Figure 4.13: Some examples of the bias field correction algorithm proposed by Ahmed et al. The
top images are the original images, whereas the bottom images are the corrected
images. The last column is the result when the bias correction was applied to the
middle column with the difference that in the first two columns the skull stripping
process had been performed.

FCM is known for having convergence problems and to overcome these issues spatial

constraints were incorporated. A negative effect of these spatial constraints is that low

contrast details have been eliminated due to the blurring. In combination with a stronger

level of noise in premature infant data, the algorithm fails to distinguish between GM

and WM. In the last example on the right in Figure 4.13, the CSF was falsely identified

because the CSF was segmented as WM.
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The differences between the proposed methods and the other two algorithms was exa-

mined on a large database and an example of this investigation is illustrated in Figure

4.14 where the histogram was created from an example of the results that were generated

by each method. Similar results as those presented in Figure 4.14 are obtained for all

datasets where a clear difference in the intensity distribution of each image can be noti-

ced. The blue line indicates the results for the proposed method where the differentiation

between grey matter and white matter is illustrated by two peaks. Two peaks can also be

observed from the results produced by Fuzzy C-Means algorithm displayed in red. Ho-

wever, in that case, the largest peak presents the background pixels and the smaller peak

describes all brain tissue. This is similar to the results of the histogram-based technique

displayed in green where the low level intensity peak presents the background and the

high level intensity presents everything else. The outcome demonstrates that the most

accurate results are given by the proposed method.

Figure 4.14: The intensity distribution obtained after bias field correction. The blue line pre-
sents the intensity distribution of the proposed method, whereas the red line is the
result of the Fuzzy C-Means method, and the green line presents the results of the
histogram-based technique.

4.7 Conclusions

This chapter proposed a bias field correction algorithm for infant brain MRI data. In this

technique, the data is pre-processed using histogram analysis, a coherence enhancing

filter and contrast enhancement. A pre-segmentation using a sequentially performed
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Otsu algorithm with the combination of a probability calculations, allows the generation

of an intensity map for each region (white and grey matter). The bias field is computed

by applying a Butterworth low pass filter on the intensity map. The original image is

corrected by multiplying the calculated bias field with the original image. A number

of experiments indicate that the algorithm reduced the intensity variations without any

attenuations in the edge information.
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Chapter 5

White Matter Segmentation

As introduced in Chapter 2, the process of segmenting a specific tissue in brain MRI

data is a challenging task. The majority of the developed segmentation algorithms were

designed for the segmentation of adult brain MR images. Due to the early stage of the

brain development in infancy, the application of these algorithms to infant MRI data

has limitations. The segmentation of infant brain MRI data is difficult because of the

low contrast between tissues, partial volume effects and the lack of clear edges. As a

consequence, the segmentation requires carefully selected features. Some researchers

combined the segmentation with prior information that are presented in form of an atlas.

These segmentation algorithms rely on the quality of the atlas and a large amount of

manually segmented data is required to generate an accurate prior brain model.

In our study, the anatomical structure information presented as a prior atlas for infant

brain MRI data was not available, and the proposed algorithm is constructed as a com-

bination of multiple intensity-based methods. The segmentation algorithm is the third

part of the framework presented in this thesis. At this stage, the white matter tissue can

be segmented after the non-brain tissue has been removed and the intensity inhomoge-

neities in the images have been corrected. In this chapter, a novel and fully automatic

segmentation algorithm for brain MRI data during infancy is presented. The next section

outlines an overview on the designed technique and is followed by a detailed descrip-

tion of all computational steps of the proposed method. A quantitative evaluation of this

approach is presented in Chapter 6.
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5.1 Overview

Figure 5.1 outlines the structure of the proposed segmentation algorithm which aims to

extract and measure the white matter region in infant brain MRI data. During the first

stage, the data is pre-processed by adjusting the intensity distribution in the same way as

explained in Section 4.3. The pre-processing part was extended by one step which ana-

lyses and corrects the head position. This is followed by two Expectation Maximization

Figure 5.1: An overview of the probabilistic segmentation technique for white matter segmen-
tation.

(EM) algorithms. The first EM evaluates the results obtained from histogram analysis

and the second EM uses the images from the contrast enhancement step. In order to

improve the EM classification, the two EM results are combined, which amplifies the

discrimination between the white matter and the grey matter.

Next, an Otsu thresholding algorithm is applied as previously introduced in Section

4.3. The Otsu segmentation allows a preliminary identification of the white matter region

on which the main segmentation step is based. Given that the deep grey matter consists

of white matter and grey matter tissues, this area is detected in a separate step with the

intention of improving the segmentation results. To completely extract the white matter

and correct the segmentation errors, a re-classification of the partial volume voxels and

of the voxels situated on diffused contours is performed.
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5.2 Data Pre-Processing

The data pre-processing step is composed of adjusting the head position, histogram ana-

lysis, Coherence Enhancing Diffusion and contrast enhancement, as shown in Figure

5.2. These methods are applied in the same way as it was described in Section 4.3, ex-

cept for the first step. The main addition to this pre-processing step is an analysis of

the head position within the volume. This step was only developed to aid the precision

of the cerebellum and deep grey matter detection which adjusts the position of the right

and left ventricles (this will be presented in Section 5.5). Without this step, important

indicators required to detect the cerebellum and the deep grey matter can disappear, and

by adjusting the head position, the localisation of these features is improved.

Figure 5.2: Overview of the pre-processing steps.

In order to facilitate the description of the techniques performed in this chapter, an un-

derstanding of the coordinates of the brain MRI data is necessary. Figure 5.3 illustrates

images in the axial, sagital and coronal views for one patient, in which the arrows indi-

cate the 3D coordinate system.

Figure 5.3: Representation of the coordinates of the head in three dimensions. The example on
the left presents an axial view, the middle image illustrates a sagital view and the
right image shows a coronal view. The arrows indicate the coordinate system.

The initial correction step attempts to calculate the angle of the head position in the z-

axis direction. This can be visually illustrated when a patient has the head tilted forward

or backward during the acquisition. This step is essential for the proposed 2D cerebel-

lum detection algorithm because the features on which the cerebellum and deep grey

matter extraction is based, may change or disappear in different head positions. This ad-

justment is required in the pre-processing step because different volumes are generated

from the pre-processed data.
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The variations in the x-axis direction (e.g. if a patient turns the head to one side) do

not have an impact on the algorithm and have, therefore, not been investigated in this

step. Therefore, to simplify the procedure, it was decided that the adjustment of the head

position in the z-axis direction is sufficient.

The algorithm commences by selecting the image with the largest brain tissue area at

the position of the seedpoint in the z-axis direction in the volume. In this image, the

lowest and the largest y coordinate of the brain tissue are located. These two locations

describe the front and the back of the head, as shown by the points a1 and a2 in Figure

5.4. The angle of the head is measured by the lowest y-coordinate represented as a1 and

the largest y-coordinate illustrated as a2. The following formula is used to calculate the

angle of the head in the sagital view,

angle = arctan
za2 − za1
ya2 − ya1

(5.1)

where z and y are the coordinates of the points a1 and a2, displayed in the sagital plane

in Figure 5.4. As an ideal position, the angle of the first patient in this study (approxi-

mately 1.5 radians or approximately 86 degrees) was taken because the head position

of this patient provided the optimal orientation for the extraction of useful information.

A sagital image from the first patient with the two computed points is displayed in the

top section of Figure 5.4. In order to reduce the resampling errors, it was determined

that the angle of the head can vary within a range of 1.6% (meaning 0.05 radian in each

direction of the initialised head position) without being adjusted. If the head angle is wi-

thin this range, it has been determined that the features were detectable. Therefore, only

where the head orientation is outside this range, the head position is recalculated. The

reorientation step of the algorithm applies a volumetric rotation that involves an affine

transformation and cubic interpolation which minimises the problems generated by non-

isometric voxels. When dealing with non-isometric data the process related to volume

rotation is always associated with loss of data. To maintain the same size of voxels after

the rotation, the resulting 3D data is adjusted to the original 3D matrix dimension.

Figure 5.4 introduces three examples of the position of the head. The sample on the

top is a sagital image with points a1 and a2 of the first patient, on which the other angle

is adjusted to. The second example is a sagital image of another patient before cor-

rection, and the third is a sagital image presenting the second example after the head

position is corrected.

The following steps of the white matter segmentation method presented in this chapter

are a combination of 3D and 2D algorithms, and the 2D procedures process the data in

the axial view.
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Figure 5.4: Three examples of sagital images taken from different patients. The top sample
is from the first patient upon which all the other patients’ datasets are adjusted to,
whereas the examples below are sagital images from a patient in which the head
position is estimated and then adjusted.

5.3 Expectation-Maximization Segmentation

As mentioned in Chapter 2, the Expectation-Maximization (EM) technique generates

accurate segmentation results on infant brain MRI [91], while other methods are known

to be less precise [52]. For this reason, it was decided to investigate the accuracy of the

EM method when applied to infant brain MRI segmentation.

The Expectation-Maximization (EM) algorithm is a general technique which provides

an iterative computation of the maximum likelihood estimation in tasks where the data is

incomplete. The EM calculates the maximum likelihood parameter using an estimation

of the hidden data based on the current parameter approximation. Then, the estimated

complete data which is composed of observed and missing data is utilised to recalcu-
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late the parameters by maximising the likelihood of the complete data. In this study, a

Gaussian Mixture Model (GMM) is employed in the EM with the purpose of estimate

the distribution of the data.

The EM algorithm can be summarised as follows:

1. Initialise parameters

2. E-step: computes the posterior probabilities (pij) of the hidden data using the

observed data and the current parameter estimation

pm+1
ij =

G(ymi , µ
m
j , σ

m
j )cmj∑K

k=1(G(ymi , µ
m
k , σ

m
k )cmk )

(5.2)

and G(y, µk, σk) =
1√

2πσk
exp
−(y − µ)2

2σ2
(5.3)

where pij denotes the posterior probabilities at iteration m + 1 and expresses the

probability of the voxel i to belong to the cluster j. G(y, µ, σ) is the Gaussian

function with the standard deviation σ, y describes the intensity value, µ denotes

the mean, c is a weight and K is the number of tissue classes.

3. M-step: calculates the maximum likelihood parameters for the measurement of

the complete data

µm+1
j =

∑n
i=1 yip

m+1
ij∑n

i=1 p
m+1
ij

(5.4)

(σm+1)2 =

∑n
i=1 (yi − µm+1

j )2pm+1
ij∑n

i=1 p
m+1
ij

(5.5)

cm+1
j =

1

n

n∑
pm+1
ij (5.6)

where n is the number of voxels.

4. repeat steps 2 and 3 until convergence.

The EM iterates between the E-step and the M-step and converges when the maximum

likelihood parameter is obtained for the observed data. The optimisation of the parame-

ter φ includes the identification of µ and σ and is defined as the maximum likelihood
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estimation of the parameters using the observed data with their corresponding weights

c. The likelihood maximisation can be mathematically expressed as follows:

L(φ) =
n∑
i=1

log
K∑
k=1

G(yi, µk, σk)ck (5.7)

φ = arg max
φ

L(φ) (5.8)

where L describes the likelihood and φ denotes the current parameters.

EM is one of the most common algorithms in brain segmentation and mostly used on

adult MRI data for which the GMM was optimised by using an atlas as prior informa-

tion [76] [8]. Over the past few years, the EM technique has received significant interest

when used for the segmentation of young children [91] and neonatal brain MR images

[31]. The popular choice is to combine EM with an atlas which influences the segmen-

tation procedure. As mentioned before, these atlases are population dependent and an

atlas generated from adult data cannot be applied to infant brain images [50]. In this

study, the EM is utilised to extract information from the brain tissue. For this reason, the

classification is computed in two Expectation-Maximization procedures, where each EM

is applied to different input volumes and both results are then combined subsequently.

Figure 5.5 outlines the different steps of the proposed EM process.

Figure 5.5: An outline of the EM process.

The partial volume effects negatively influence the segmentation results. As a conse-

quence, two clusters are insufficient to identify the grey matter and white matter in the

MRI data. Following a detailed investigation, it was decided to initialise each EM algo-

rithm with ten classes. A selection of lower than ten classes resulted in errors that were

caused by the partial volume voxels as well as the inconsistent intensity distribution of

the white matter tissue. Initialising the EM with a higher number than ten classes has

demonstrated no differences in the classification outcome when compared to the results
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obtained with ten classes. An example that emphasises the selection of the number of

classes for EM is illustrated in Figure 5.6.

Figure 5.6: Combined final results are shown when the EM is used with different number of
classes. Left: original image after bias field correction was applied. Magnified
region from original image (A). The other images present results using (B): four
classes; (C): eight classes; (D): ten classes; (E): twelve classes.

In this approach, the EM algorithm was, therefore, used with ten classes and the µi
were initialised using the K-means algorithm (as described in equation 3.8) in the same

way as presented by Xue et al. [132]. The EM is performed once on the intensity adjus-

ted data and once on the contrast enhanced data. Figure 5.7 presents an example of each

applied EM algorithm and the combined result. The left image is the EM result which

was based on the histogram analysis. It can be observed that the grey matter provides

a more homogeneous region than in the result where EM was applied to the contrast

enhanced image. On the other hand, when the EM algorithm is applied to contrast en-

hanced images, the results provide a more homogeneous white matter region. In order

to enhance both regions, the two results images are combined using pixel by pixel mul-

tiplications.

Due to the fact that the EM algorithm could not properly classify the partial volume

voxels, the EM results are used in conjunction with a re-classification scheme. The ge-

neration of a preliminary white matter volume detection, on which the re-classification

step is built upon, is described in detail in the next section.
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Figure 5.7: Expectation-Maximization results; Left: EM result based on the histogram analysis
images; Middle: EM results based on the contrast enhancement images; Right: The
result after combining both EM results.

5.4 White Matter Pre-Segmentation

In this part of the WM segmentation algorithm, a preliminary white matter mask is ge-

nerated and an overview of each step is illustrated in Figure 5.8. This step is essential

because the outcome of the EM algorithm has not provided sufficient accurate results.

The inaccuracies in the EM results were caused by partial volume effects and the diffu-

sed boundaries between brain tissues. Therefore, this preliminary segmentation step is

performed with the aim of generating an initial white matter volume which is corrected

and finalised by applying two algorithms which will be explained in Section 5.5 and 5.6.

Figure 5.8: Overview of the pre-segmentation steps.
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Otsu Classification: The Otsu algorithm is used in a similar way as it was performed

in Section 4.3. The image is first divided and each part is then categorised into four

classes using the Otsu thresholding method. The difference in the use of Otsu classifi-

cation between the bias field correction algorithm and this step is that, at this stage, the

four classes are not further processed. The advantage of this classification is that the two

middle classes, class two and three, are generated by the diffused boundaries and the

partial volume voxels, which will be closely examined in the reclassification step that

will be discussed in Section 5.6. For this reason, the white matter pre-segmentation step

focuses only on the first class of the Otsu classification representing the white matter

tissue. An example that presents a result image can be observed in Figure 5.9 (middle

image of the top section).

Preliminary Mask Extraction: The extraction of the preliminary mask is based on

the application of a three dimensional binary region growing algorithm to the voxels of

the first class of the Otsu classification. From an anatomical perspective, the white mat-

ter tissue is connected throughout the volume. In this regard, this procedure is necessary

because it eliminates small non-connected regions which are wrongly classified into the

white matter class.

Seedpoint Detection: The seedpoint of the region growing is automatically selected.

During the intensity adjustment step, the seedpoint in the z-axis direction is determined

by selecting the image with the largest brain tissue. Within the image that contains the

seedpoint z, the x and y coordinates are obtained by extracting the largest connected

region associated with the class one of the Otsu results, which represent the white matter

tissue. One pixel is taken from the extracted region and is defined as seedpoint.

Contours: From an anatomical view, the white matter tissue is surrounded by the

grey matter tissue. Using this knowledge, the elimination of the non-white matter tissue

is achieved by considering the contours of the grey matter tissue as a stopping condition.

Two different contour volumes are computed.

1. The first contour volume represents the outer contours of the grey matter tissue that

are connected to the background. The determination of the grey matter contours

is based on the final Expectation-Maximization results in combination with the

contrast enhanced results. The first approximation of the grey matter is computed

by combining the lower intensity classes of the EM results until the number of

voxels reaches a threshold. This threshold is set as 4/7th of the brain tissue vo-

lume. Using a threshold which returns just above the half of the volume, enables

the inclusion of partial volume voxels and the voxels situated close to unclear

boundaries. These initial contours are also used in the second phase, where the
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inner contours are calculated.

Due to the early stage of brain development, the grey matter has a small thick-

ness, which can lead to unclear borders between white matter and grey matter.

The consequence is that small grey matter parts have the same intensity as the

white matter and are, therefore, excluded from the contour. In order to determine

the final outer contours, the located boundaries are enclosed using morphological

operators.

2. In the second phase, the inner contours are calculated. An investigation was car-

ried out using the Marr-Hildreth edge detector to find the contours between the

grey and white matter. The outcome reveals that the Marr-Hildreth algorithm is

not precise enough and the enclosed contours can lead to false segmentations. The

Mar-Hildreth algorithm is known for returning a high level of false positives. Shat-

tuck et al. [109] pointed out these issues and they tried to overcome them by using

morphological operators. This was possible for brain extraction but not for white

matter segmentation. Therefore, the contours are extracted by applying the Canny

edge detector on the contrast enhanced images. The Canny algorithm is applied

with σ, which is set to one and two thresholds, the low threshold is set to 0.01

and the high threshold is set to 0.2. These values were experimentally estimated.

The edges are enclosed using morphological operators, followed by merging the

results with the previously calculated grey matter contours. The preliminary white

matter segmentation results are shown in Figure 5.9 (first and second image in the

bottom row).

Removal of False Segmented Regions: Due to small brighter areas in the brain tis-

sue, which cannot be clearly classified, since they might be residues of CSF, additional

processing of the results is necessary and is achieved by removing small false segmen-

ted areas. For this reason, the non-brain tissue (background) boundaries are examined.

This is based on the assumption that the white matter is surrounded by the grey matter.

The falsely segmented areas are composed of cerebrospinal fluid, which appears with

the same intensity as the white matter and are, therefore, misclassified. In this regard,

all regions defined as white matter and connected to the background are evaluated. The

focus lies on the contour of the analysed region. Three values are determined and then

compared. These values are composed of the sum of the contour voxels which connects

to background (bgcont), secondly the sum of the contour voxels of the located region

(regioncont) and thirdly the sum of the contour voxels which connect to the grey matter

region (gmcont).

pbg =

∑
bgcont∑

regioncont
pgm =

∑
gmcont∑

regioncont
(5.9)
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The idea is to exclude the small regions using two criteria. Firstly, the pbg (probability

of the background) has to be higher than a threshold (experimentally the threshold has

been set to 0.4). The pbg describes the percentage of contour pixels connected to the

background. Secondly, if the region is connected to a grey matter contour with less than

twice the threshold, the region is detached and removed from the white matter mask.

In case the white matter is connected to the outside background voxels but does not

fulfil the requirements of being removed, the connected area is reduced by three pixels

in width from the contour which connects to the background. This is essential because

the white matter has to be surrounded by grey matter and the presence of artefacts can

prevent the accurate distinction between the grey and white matter.

This segmented white matter volume marks the basis for the following probabilistic

segmentation where the partial volume voxels are classified. Figure 5.9 illustrates an

example that details the steps of the preliminary white matter extraction. It can be ob-

served that the majority of the false segmented voxels lie in the deep grey matter region

(see the region marked with a rectangle in Figure 5.9). This issue will be dealt with as an

additional stage of the segmentation procedure and will be explained in the next section.

Figure 5.9: The steps required to extract the preliminary white matter mask. Top row, left:
The pre-processed original image, middle: The result of the Otsu classification and
right: The first white matter mask. Bottom row, left: The outer grey matter contour,
middle: the result of the Canny edge detection and right: the preliminary white
matter mask.
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5.5 Cerebellum and Deep Grey Matter Detection

One of the major difficulties while processing MR images of the developing infant brain

is the deep grey matter. This step is not an issue when using a global segmentation such

as atlas-based [91] on healthy patients. When dealing with neonatal MRI data, there is

a high probability that large variations in the brain structure may be present. Cardoso et

al. [31] stated that an atlas-based segmentation alone does not provide sufficient results

when applied to premature infants. This issue has been analysed by Shi et al. [110]

who evaluated the application of atlas-based segmentation on infants brain. Therefore,

the aim of the deep grey matter and cerebellum detection is to examine this problem

by a non atlas-based approach in order to overcome the disadvantages of applying an

atlas-based algorithm on preterm infants with abnormal brain structure. When applying

a local segmentation algorithm, the inconsistent water content in the deep grey matter

and cerebellum can cause false segmentations in the proposed algorithm as well. To

overcome this problem, an additional deep grey matter and cerebellum detection algo-

rithm has been proposed. Figure 5.10 illustrates the difference in the deep grey matter

between an MR image of an infant and a two-year-old child.

Figure 5.10: Top row illustrates a brain image of a two-year-old child where the brain structure
has developed. The right side shows a magnified image of the deep grey matter.
The bottom row introduces an infant brain image where the deep grey matter region
has been magnified. In both examples the deep grey matter has been outlined by
surrounding the region with a red line.
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In adult MRI data, the deep grey matter is well structured and can be displayed in six

smaller regions. During infancy, it is difficult to distinguish the white matter and the

deep grey matter due to a high amount of CSF within the brain tissue.In Figure 5.10,

the magnified deep grey matter region is highlighted by a red line. The atlas-based tech-

niques have one advantage in the deep grey matter segmentation process. Information

of the myelinated white matter is incorporated in the atlas and is then used to influence

the segmentation for the extraction of this region. This is often not possible in intensity-

based segmentation because there is not enough information within the deep grey matter

region for the detection of the myelinated white matter tissue. The absence of myelina-

ted white matter information is especially present in 1.5T data.

Given the fact that the region is composed of white and grey matter which results in

intensity inconsistencies and diffused boundaries, the segmentation poses a great chal-

lenge. Therefore, in this study, the clinicians decided to assign this entire region as deep

grey matter. Figure 5.11 illustrates several images from different views of the brain in

which the investigated regions are indicated by arrows. The red arrows point at the deep

grey matter where it can be observed that there are no clear contours when they are at-

tached to the white matter tissue. The cerebellum is indicated with green arrows and the

brain stem is identified by a yellow arrow.

Figure 5.11: The deep grey matter is marked with a red arrow in each image. The green arrows
identify the cerebellum and the yellow arrow indicates the brain stem.

Several researchers [41] [102] have performed investigations on the detection of the

brainstem and cerebellum on adult MRI using active contour models or analysing the

intensity distribution. Gui et al. [52] used the watershed technique to extract the deep

grey matter, cerebellum and brainstem on neonatal MRI data. However, their method

is not entirely automatic and a seedpoint that marks the cerebellum had to be manually

selected. Their data was acquired with a 3T scanner, which provides images with increa-

sed contrast between the grey matter and the white matter.
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In MR images shown in Figure 5.11, the cerebellum and the deep grey matter merge

at some point and it is difficult even for clinical experts to detect the exact position that

separates them. Therefore, in this step, the two parts are regarded and extracted as one

object. Figure 5.12 illustrates an example of a sagital brain image which shows the ana-

lysed region, which is marked with a green line.

Figure 5.12: A sagital brain image detailing the deep grey matter and the cerebellum, which
is marked with a green line. The region is divided into three parts; the first part
(1) represents the cerebellum connected to the brain stem, the second part (2) can
include some end parts of the cerebellum, brain stem and deep grey matter and the
third part (3) is the deep grey matter. The separation between the first and second
part is defined when the size of the brain stem is the smallest and the third part is
separated from the second step when the largest distance between ventricles can be
measured.

The fully automatic detection process is divided into three parts where each part focuses

on different features of the brain. The first part, the extraction algorithm, indicated by 3

in Figure 5.12, identifies the deep grey matter by examining the information related to

the brain ventricles. The second step, marked as 1, locates the cerebellum, and the final

step is the region between the cerebellum and the lower part of the deep grey matter. For

the first two steps, the idea is to start with one estimated image, on which the features

have been detected, and to apply this information to the contiguous images. In the last

step, the information of the first and second step is used to estimate the connected region.

5.5.1 Extraction of the Deep Grey Matter surrounding the ventricles

The main idea used in the deep grey matter (DGM) extraction (indicated with 3 in Fi-

gure 5.12) is to detect the Region of Interest (RoI) by locating the brain ventricles which
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provide the essential information.

Using the knowledge provided by clinical experts, a few assumptions are established

in order to detect the deep grey matter. These are summarised as follow:

• Ventricles are always present.

• In the axial view, as illustrated in Figure 5.13, the deep grey matter is always

attached to the ventricles.

• The mid line between the brain ventricles, which is marked with an orange line in

Figure 5.13, maintains the same position throughout the volume.

Figure 5.13: The deep grey matter and its features. Left: sagital view of the deep grey matter.
Right: the deep grey matter in the axial view taken from the location marked with
a yellow line in the sagital image.

In this part of the brain, the ventricles are strong feature points on which the DGM iden-

tification can be based. The idea is to fit an ellipse within the region of interest, which

allows the detection of the DGM. This approach has a clear advantage since the informa-

tion of the ventricles can be projected on other locations in the volume where less strong

features appear. Figure 5.14 illustrates an overview of the steps that are performed to

extract the DGM. The method commences by locating the RoI and the ventricles infor-

mation. The ellipse is fitted to the examined region using the knowledge about contours

and information related to the ventricles.
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Figure 5.14: Overview of the steps needed to locate and extract the last part of the deep grey
matter.

Region of Interest and Feature Extraction: In the first step, the estimation of the

RoI is determined based on the identification of the brain ventricles. The ventricles are

firstly detected by converting the pre-processed images into binary and then by locating

the largest CSF parts inside the brain volume. In a minority of cases, it can be observed

that the two ventricles are not connected to each other. In these cases, the two largest

CSF regions form the ventricles. The image selected for this procedure is obtained by

determining the image in which the top points of the ventricles are farther apart from

the bottom ventricle points. The RoI is obtained by generating a box that surrounds the

ventricles, where on the y-axis is the length of the ventricles. Regarding the x-axis, the

largest distance between the outer ventricles points is calculated and one third of the

distance is added to each side. In order to obtain the best estimation of the RoI, an initial

angle of the head position in the x-axis direction is estimated. The angle is computed

in the same way as described in Equation 5.14. Due to the fact that the ventricle feature

points are precisely located after the RoI is extracted, the calculation of the angle pro-

vides an initial estimation.

After the ventricles are located, four feature points are identified in each image which

contains parts of the ventricles, as shown in Figure 5.15. These points represent the ini-

tial feature points that will be used for finding the outer contour of the deep grey matter.

These feature points are constructed using a min-max search for all pixels identified as

ventricle. The challenge increases if parts of ventricles are missing as shown in Figure

5.17 (see the right image). For example, if one of the ventricle parts from the top is

missing, the feature point can be estimated using the angle α of the previous image i+ 1

and the angle β of the current image i. As mentioned before where the assumptions

were outlined, the angle α does not change throughout the volume and can, therefore, be

99



5.5. Cerebellum and Deep Grey Matter Detection

Figure 5.15: This illustration presents three examples of the four feature points (tl, tr, bl, br)
which are identified in each image which contains the ventricles. The point between
the four feature points is the centre point (C0).

applied in continuous images where the information is missing. An example that shows

the computed angles in both images is presented in Figure 5.16.

The formula used to calculate the angle α and β is as follows:

α = arccos
< v1 , v2 >

|v1| · |v2|
β = arccos

< v3 , v2 >

|v3| · |v2|
(5.10)

where v1 describes the vector between c(i+1) and C0(i+1), and v2 denotes a horizontal

vector. The angle β is calculated in the same way as α except that v3 describes the vector

between the centre C0 and the located top ventricle feature in the current image, which

is the top right ventricle point tr in Figure 5.16.

Figure 5.16: An example that illustrates the angles needed for the estimation of a missing top
left ventricle feature point. In the two graphs, the ventricles of two contiguous
images are outlined in red. The left graph indicates the top ventricle points in the
previous image (highlighted in green), whereas the right graph shows the points in
the current image where the top left point is missing and needs to be estimated.
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The angle θ is used to rotate the identified feature point so that the unknown ventricle

point can be estimated.

The angle to estimate the left ventricle point is calculated as follows:

θl = 2 ∗ (α− β) + β (5.11)

The angle to estimate the right ventricle point is calculated as follows:

θr = α− 2 ∗ (β − α) (5.12)

The x and y coordinates of the missing point for left or right is then estimated by:

txl,r = C0x + cos θl,r ∗ rad tyl,r = C0y − sin θl,r ∗ rad (5.13)

where rad is the radius between the detected ventricle point and the centre C0. An

example of the located ventricle points is displayed in Figure 5.17, whereas the right

image presents an example in which one part of one ventricle is undetected.

Figure 5.17: Two examples taken from different patients where the ventricle feature points have
been located. Each located position is marked in a different colour including the
centre of all four detected points.

Create an Initial Ellipse: After detecting all necessary ventricle points, an initial ellipse

is constructed in two phases. This is accomplished by firstly locating the contours of the

deep grey matter and then fitting an ellipse which is based on the detected contour points.

Due to the high water content in the brain tissue, the boundaries between the DGM

and the white matter are unclear and diffused. For this reason, the contour images are
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generated by extracting the edges of the preliminary white matter mask. The guiding

idea in this step is to mark the region which surrounds the contour points of the DGM

and then select the edge points in this area. In order to find the required region, two

ellipses with different sizes are constructed, which are based on the centre point that is

calculated from all four ventricle features.

• The smaller ellipse is defined as a circle where the radius (rs) is based on the Eu-

clidean distance between the centre point and one of the located ventricle features

as shown in Figure 5.18.

• The larger ellipse is determined as follow. The short radius of the larger ellipse

is set as the radius (rs) plus the distance (d1) between the centre point and the

ventricle in x-axis direction. For the long radius, the radius (rs) is enlarged by

adding half the distance (d2) between centre point and the ventricle in the y-axis

direction.

Figure 5.18: An example that illustrates the radius of the small ellipse (rs) and the distances (d1
and d2) which are added to the radius to form the large ellipse.

The contour points, between the two ellipses, are used in the estimation of the prelimi-

nary ellipse.

The angle of the ellipse is computed using the information of the ventricle points. This

is important because it allows the adjustment of the fitted ellipse in case the angle is too

far off. This can occur if not enough contour points are found. The angle is calculated

using the following formula:

ϑ = arctan

(
cy − C0y

cx − C0x

)
(5.14)

where c describes the top middle point between tl and tr and C0 defines the centre point
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for all ventricle points. This calculation is essential because the angle is applied throu-

ghout the deep grey matter extraction algorithm.

Ellipse Fitting to Feature Points: In order to find the best fitted ellipse for a given

set of data points, the estimation is carried out using the least squares method and ap-

plied without the use of any weights [57]. This means that the best least squares fit is

optimised by minimising the sum of the squared difference between the given values

and the fitted values [45]. For the fitting process, the conic ellipse is utilised so that

the computed curve is obtained by an intersection with a cone. In this case, the ellipse

is a general conic fitting of an implicit second order polynomial and is mathematically

described as follows:

F (A;X) = AX = ax2 + bxy + cy2 + dx+ ey + f = 0 (5.15)

where A = [a b c d e f ] describes the parameters of the conic equation and X =

[x2 xy y2 x y 1] describes the conic equation. F (A;X) describes the algebraic distance

of a point (x,y) to the conic F(a;X)=0. The fitting of a general conic can be approached

by minimizing the sum of the squared algebraic distance
∑N
i=1 F (Xi)

2 of the curve to

the N data points Xi.

Extract the Deep Grey Matter: The ellipse fitting is applied only to the images in

which the ventricle features can be detected. It is apparent that the higher the number

of feature points (ventricles and contours), the better the ellipse is aligned to the given

set of points. Since the boundaries between DGM and the white matter tissue can be

unclear and difficult to detect, the ellipse fitting is performed in conjunction with the

calculation of the dice similarity measure (DSM). This means that for each constructed

ellipse the DSM is measured in the current and the next image. Due to the fact that the

ellipse changes in size within the volume, it was decided that if the DSM is higher than

95%, then the image and ellipse information is stored. In order to perform an accurate

detection of the DGM, the centre point and the angle information are determined using

their average values of the stored ellipses.

To finalise the DGM volume, a primary ellipse is selected by choosing the largest el-

lipse of the stored information. The ellipse is then projected to the contiguous images

while adjusting the ellipse size in agreement with the changes of the ventricles. This

means that the differences in the location of the top ventricle points between the current

and the previous image are measured and used to scale the ellipse in the current image.

The brain tissue volume delineated by ellipses in each image is marked as DGM. Figure

5.19 illustrates an example of the final outcome where the detected DGM is marked with

a darker grey intensity value.
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Figure 5.19: The left image is the original image which was pre-processed using the brain ex-
traction algorithm and has the bias field corrected. The right image is the result
showing the detection of deep grey matter (the detected area is marked in darker
grey).

5.5.2 Detection of the Cerebellum

In this part of the algorithm (indicated as part 1 in Figure 5.12), the cerebellum and the

brain stem are identified and then removed from the white matter segmentation. The

cerebellum consists of white matter and grey matter tissues, which can be distinguished

in a fully developed brain but is unclear at birth. For this reason, parts of the cerebellum

are wrongly segmented as white matter tissue. Figure 5.20 introduces the steps that are

performed to identify the region of the cerebellum.

Figure 5.20: Overview of the cerebellum detection process.

In order to simplify explanations, the RoI in this part of the brain is referred to as ce-

rebellum because both regions, the cerebellum and the brain stem are connected and

extracted as one region.

Select the Cerebellum Image Before it Connects to the Cerebrum: The guiding idea
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is to first locate the axial cerebellum image, just before the cerebellum connects to the

cerebrum. The advantage of this is that from the axial view, the cerebellum, has the

largest size and the exact shape and contours can be estimated. In addition, in the fol-

lowing images the cerebellum increasingly connects to the cerebrum which complicates

the RoI detection because the contours between the cerebellum and cerebrum are often

unclear and can only be estimated. In order to assure that the cerebellum maintains the

same shape for each patient, the re-positioning of the head, described in Section 5.2, is

essential.

As mentioned before, the idea is to locate the image of the cerebellum just before

connecting to the cerebrum. This was done by analysing the volume and contour changes

of the cerebellum. However, this process was not precise enough when the changes are

not large. Knowing that the cerebellum contains the largest 2D volume before connec-

ting to cerebrum, the goal is to identify the most outer contour points in the x and the

y-axis direction. These points can be found on the coronal and sagital views as shown

in Figure 5.21.

Figure 5.21: Left: An image in the sagital view. Right: The image in the coronal perspective of
the same patient. In both images the two extrema are displayed in yellow and the
region of the cerebellum is outlined in green.

To identify the outer cerebellum contour points, a min-max search is applied on the sa-

gital and coronal views by considering the brain tissue below the point a2 which was

calculated in Section 5.2 after brain orientation correction. Due to the new head posi-

tion, only the cerebellum and the brain stem remain below point a2 which facilitates the

min-max search. Figure 5.21 illustrates an example in coronal and sagital views where

the cerebellum and the brain stem are outlined in green and the outermost cerebellum

points are indicated in yellow and the point a2 is indicated in red.

After locating the outermost cerebellum contour points, the next step is to find the image

of the cerebellum before it connects to the cerebrum. The axial perspective is the only

view where all contour points are present and, therefore, the algorithm continues to pro-

ceed in the axial perspective. In order to find the cerebellum volume, the points (top,

bottom, left and right) of the cerebellum are measured in each image individually and
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then compared to the outermost contour points. The target image is found when the ou-

termost contour points fit the measured points as illustrated in Figure 5.22. In this figure,

the left image presents an example where the cerebellum has not reached the maximum

size which is shown by the markers. The yellow points indicate the contour points of

the cerebellum volume while the green markers present the contour points of the cere-

bellum image. In this figure, the right image presents an image where the cerebellum

has connected to the cerebrum and therefore the local markers (in green) have exceeded

the extrema contour points (marked in yellow). The following steps in the cerebellum

detection are based on this located image.

Figure 5.22: Two examples of images that are analysed during the localisation of the initial cere-
bellum image. The yellow points mark the extrema feature points of the cerebellum
volume and the green points illustrate the extrema of the cerebellum in the current
image. The left image displays the cerebellum at the beginning of the sequence;
the right image illustrates the cerebellum at a later stage in the sequence where the
cerebrum starts to connect to the cerebellum, which can be observed at the bottom
of the image.

Feature Detection: In the following images, the cerebellum increasingly connects to

the cerebrum. As a consequence, it is difficult to distinguish between these two regions

and to locate the exact contours. For these reasons, new features which differentiate the

two regions, have to be located. One of these features are the contours between the non-

brain tissue and the brain tissue, which are mostly defined by strong contrast and high

gradient. In order to reduce the complexity and the number of parameters, the Sobel

edge detection, which uses 2D spatial gradient measurement to emphasise high spatial

frequency regions, was applied. This allows the generation of the four outer contour

points of the cerebellum. Some contours between the cerebellum and cerebrum are not

visible because the connection appears in the same brain tissue. However, to gain as

much information as possible, the Sobel contour results are combined with the extracted

cerebellum information in the previous image. An example of the extracted features is

presented in Figure 5.23 in the second column.
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Region Estimation: In order to estimate the cerebellum region, the missing contour

information is interpolated using a spline function on the extracted edge features. This

function fits a smooth curve to a set of noisy data points using a spline function. The

weights for the smoothing spline function are set to one. An example of the interpolated

spline results is displayed in Figure 5.23 (right column). The spline results are marked

in green.

Cerebellum Identification: The best features are recovered by extracting the intersec-

tion points between the spline results and the edge image which contains the Sobel edge

information of the current, previous and next images in the volume. An ellipse is then fit-

ted to the selected set of features using the least square fit in the same way as previously

described. Two examples of the final results are presented in Figure 5.23, in which the

right images include the spline function (marked in green) and the ellipse results (marked

in red).

Figure 5.23: Each row presents an example of the cerebellum extraction; the left image displays
the original pre-processed image; the middle image shows the extraction of the
features and the right image presents the projection of the spline function results
(in green) and the ellipse results (in red) onto the pre-processed image.
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5.5.3 Locate the Middle Section of the Deep Grey Matter

After detecting the cerebellum and the deep grey matter, the part which connects both

regions, can be estimated. Figure 5.24 presents a magnified image in which all steps of

the cerebellum and deep grey matter detection are illustrated. Due to the fact that the

brain stem and the deep grey matter are connected, they are merged into one region. The

detection is accomplished in two steps. First, the ellipse is estimated, and second, the

estimation of the parameters is refined.

Figure 5.24: Magnified images describing the three steps of the cerebellum and deep grey matter
detection. The first and the last images of the second step are presented, in which
the RoI is outlined in green. From the first image the ellipse has been projected
onto the last image, which illustrates the differences and the changes of the ellipse
throughout the second step.

For the automatic estimation of the ellipse, the changes of the feature positions from

the cerebellum towards the ventricles are calculated. The estimated features are the

parameters of the ellipse such as the centre point, the long radius r1, the short radius r2,

the top and bottom points.

Throughout the volume of region 2, it has been determined that the ellipse does not

change in a linear manner. After an investigation, it was concluded that the parameters

have minor changes at the beginning of the sequence and larger changes towards the end.

The curve which presents the best estimation of the ellipse changes within the volume

of interest, has been determined as follows:

f = 2

(
log2(N)

N∗n

)
(5.16)

where N is the total number of images and n describes the current image number in the

volume. The function f describes a slow increase for low values of n and a fast increase

when n is getting closer to N . This behaviour has provided the best approximation for
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the changes in the ellipse from one image to the next. The coordinate of the current

parameter val is based on the parameters of the first image in this step and is computed

as follows:

val = x2 − 2

(
log2(d)

f

)
(5.17)

and d = x1 − x2 (5.18)

x1 describes the parameters (centre point, r1, r2, the top point and bottom point) of the

largest ellipse located during the deep grey matter detection and x2 presents the parame-

ters of the smallest ellipse identified during the cerebellum detection.

A negative issue associated with the curve function f is that the value for the first image

has already shown an increase. For example, if the volume has 30 images and n = 1

the function f has an increase of 1.12. However, when analysing the first image, the

brain stem does not change the position compared to the previous image. For this rea-

son, a simple stretch formula is used to remap the curve function that it does not show

an increase for n = 1.

output = (input− inlo)×
(
outla− outlo
inla− inlo

)
+ oulo (5.19)

where inlo and inla denotes the input range lowest and largest value. The outlo and

outla represents the output range lowest and largest value. This formula was applied to

calculate the new coordinate of the parameter which prevents changes when analysing

the first image (n = 1). The formula is described as follows:

fv = (val − dist)×
(

d

d− dist

)
+ x2 (5.20)

where dist = d− 2

(
log2(x1−x2)

2(y)

)
(5.21)

and y =
log2(N)

N
(5.22)

where fv describes the new coordinate of the point in the y-axis direction, dist pre-

sents the changes between the iterations. This formula allows the best estimation of the

changes of the ellipse where the modifications are slow at the beginning and rapid at the

end of the volume.

Due to the fact that the structure of each patient varies slightly in its appearance, the

ellipse estimation is only an approximation and for a few patients inaccurate results have

been produced. For this reason, the second step of this algorithm checks if each parame-

ter is correctly estimated.
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• The high and low points, indicates the intersection points of the long axis with the

outline of the ellipse. These points are further examined by searching the nearest

contours with respect to the two estimated points in order to locate the optimal

position. The new high and low points allow to inspect the long radius r1.

• The short radius r2 is checked; CSF components which surround the DGM are

detected. The distance between the centre and each component after they were

projected to the r2-axis of the ellipse is calculated. The mean value of all the

calculated distances is assigned as the new short radius.

Figure 5.25 presents a few results obtained by the proposed algorithm. The top row pre-

sents the pre-processed images, while the images on the bottom row display the ellipses

that are projected onto these images. The ellipses marked in red displays the interpolated

ellipses, whereas the ellipses marked in yellow represents the corrected ellipses (if cor-

rection is not necessary only the interpolated ellipse is displayed). The three investigated

regions are of the cerebellum, deep grey matter and brain stem, which allow the removal

of the false segmented regions from the preliminary white matter mask.

Figure 5.25: Each column presents an example of the deep grey matter extraction; the top row
displays the original pre-processed images, and the bottom row shows the pre-
processed images, on which the interpolated ellipse (marked in red) and the correc-
ted ellipse (marked in yellow) are projected on. If the interpolated ellipse does not
need to be corrected, no corrected ellipse will appear as shown in the right bottom
image.
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5.6 Re-classification of the PVE and Diffused Contours

A common problem in infant brain segmentation is the classification of the partial vo-

lume voxels and the diffused contours. Gui et al. [52] applied a region growing algorithm

to segment the brain tissue. This method tend to get trapped in local minima which is de-

monstrated by the white matter under-segmentation in the regions of the gyri. Shi et al.

[110] stated that their method is sensitive to partial volume voxels. To overcome these

issues, additional re-classification of the PVE and diffused contours has been developed

in the proposed approach.

The EM results have shown misclassifications due to intensity variations within regions

and similar intensity values for different tissue types. This occurs when the EM segmen-

tation using GMM is not constrained with prior information, which can easily converge

to incorrect local maxima. Given the fact that both processes, the EM and the Otsu

algorithm, have not provided sufficient accuracy on their own, the final segmentation

step applies a re-classification step to combine the findings of these algorithms in order

to obtain a more precise segmentation of the white matter tissue. Due to the fact that

PVE can differ from one image to the next within the volume, this step of the algorithm

involves two dimensional image calculations. Figure 5.26 provides an overview of the

final segmentation step.

Figure 5.26: Overview of the final step for white matter segmentation.

This algorithm starts by extracting the contours of the preliminary white matter mask,

which have been corrected by the application of cerebellum and the deep grey matter

detection procedures. The idea is to evaluate the neighbours for each contour pixel to

decide if the pixels belong to the white matter tissue or not. Multiple estimations are

computed and applied to make a judgment about the state of the current pixel.
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• By examining the changes between pixels and their corresponding neighbourhood,

the information is used to determine if the pixel is excluded from the white matter

region or not. In case the difference between the two pixels increases too rapidly,

the pixel is excluded from the white matter region, otherwise the pixel is further

considered for classification. Experimentally, it has been determined that if the

difference between the two pixels is lower than ten percent of the maximum num-

ber of the EM classes tem, then the pixel will be further processed.

• Using the image obtained from the Otsu classification algorithm, the outcome

contains the brain tissue divided into four classes. On each image the brain tissue

volume is then divided into six equal regions and the following formula is applied

to each region.

gp =

∑
ncl=4∑

ncl=2 +
∑
ncl=3 +

∑
ncl=4

(5.23)

where n is the number of pixels defined in class cl. The gp results indicate if a

region in the image has a high or low contrast. The division of the image into six

regions yields a more precise estimation especially if the region contains partial

volume voxels. The smaller the region, the more local and precise is the estima-

tion. In our case, using a partition of six regions returns a good approximation for

the four class distribution. Additionally, as displayed in Figure 5.27, the division

of the image into six parts ensures that each divided region contains grey matter

and white matter, and allows a better discrimination in the regions next to the deep

grey matter. The contrast between the two brain hemispheres can differ and there-

fore, by dividing the two halves, the global estimation of the contrast and partial

volume voxels is more precise. A more local estimation of each pixel is performed

in combination with the global estimation. This is described below:

• When approaching the blurred contours where the intensity changes slowly, the

two previously described calculations are not sufficient. Therefore, local judg-

ments for each pixel and its surrounding neighbourhood are required.

– The same Otsu calculation as described above is performed with the diffe-

rence that this time the neighbourhood region of the current pixel consists of

a window size of 20× 20 pixels. This window size ensures that the informa-

tion corresponding to class two, three and four is included in the calculation

which allows a local estimation when dealing with low contrast and diffused

contours. In this case, the changes in the surrounding pixels are taken into

account using equation 5.23. The threshold value gp20×20 was set to 0.5 and

allows to balance the number of grey matter tissue within the investigated
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area.

– The neighbouring pixels of the current location in the EM results are analy-

sed. In this calculation a window size of 3× 3 is applied. The mean value of

the EM pixels inside the detected white matter volume emv1, is compared

to the mean value of the EM pixels outside the white matter volume emv2.

Figure 5.27: Image obtained after the Otsu algorithm is applied. This image is divided into six
regions.

The analysed pixel has to be consistent with some general criteria. Firstly, in the Otsu

image, the pixel can be in any of the classes except class four, which defines the grey

matter (marked in red in Figure 5.27). Secondly, the pixel cannot belong to background,

a Canny contour nor to an outside contour marked pixel. Finally, the EM class difference

between the white matter contour pixel and the analysed neighbour pixel has to be lower

than ten percent of the maximum number of the EM classes tem.

The pixels are further processed when they fit the first criteria. For further evaluation,

the re-classification scheme is partitioned into two case scenarios; first gp > 0.6 and

second 0.5 < gp ≤ 0.6. In case of gp < 0.5, the contrast is extremely low and the pre-

segmented white matter region has provided accurate results. This conclusion was made

after observing the same behaviour throughout the database. One example that presents

different cases is illustrated in Figure 5.28. The dark grey value is the region that is

defined as white matter. The white region is classified as class four (or grey matter) and

the grey values between represent the diffused contours and the partial volume voxels.
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Figure 5.28: An example that illustrates the three scenarios for changes in the gp values. The
lower the gp value the lower the contrast. The middle column presents magnified
regions taken of the two images on the left and the right column illustrates the Otsu
classification of these magnified regions.

The following listing details the two cases where the neighbourhood pixels are included

in the re-classification process.

1. The first case deals with a region characterised by a high number of grey matter

pixels and a small number of partial volume pixels. It was experimentally esti-

mated that this appears when the gp value is larger than 0.6. In this instance, all

pixels with a higher gp20×20 than the threshold, as well as the pixels of class two

and three of the Otsu results, emv1 has to be smaller or equal than emv2 + tem

in order to be included in the white matter volume.

2. The second case investigates the region where the grey matter pixels only slightly

outnumbers the partial volume pixels, which indicates a lower contrast. This is the

case when the gp value is between 0.5 and 0.6. All the thresholds are analysed in

the same way as in the previous case, except that the pixels which lie in the third

Otsu class are defined as grey matter.
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The application of these conditions has provided an optimal approach to classify the

partial volume voxels and voxels situated on diffused contours. A quantitative evalua-

tion of the framework is presented in the next chapter which demonstrates that this re-

classification algorithm provides accurate results that overcome the difficulties generated

by PVE and diffused contours.
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Chapter 6

Evaluation

In order to evaluate the performance of the proposed approach, a quantitative and qua-

litative analysis is necessary. This chapter commences by introducing the 1.5T MRI

data which was provided for this study by the clinical partners from the Temple Street

Children’s Hospital, Dublin, Ireland. This is followed by an experimental section where

the proposed algorithm is numerically evaluated. The outcome of testing is analysed

and a discussion about the strengths and limitations of the developed method is presen-

ted. Section 6.3 presents an investigation which was preformed using independent 3T

datasets provided by the Image Sciences Institute1.

6.1 1.5 Tesla Infant Data

Brain volume MRIs of premature infants have been acquired at full term equivalent in the

Children’s University Hospital, Dublin, Ireland. During the MRI acquisition of the pre-

term infants’ head, the children were sedated, whereas the infant born at term were not

sedated. Several sequences were acquired from each patient. The proposed algorithm

is developed for T2-weighted MRI volume because from all acquired MRI sequences

received from the Hospital, the T2-weighted images produced the best contrast diffe-

rences between the different anatomical brain structures. Figure 6.1 gives an example

of the two most common sequences T2- and T1-weighted MR images used in medical

image processing.

The developed approach has been tested on T2-weighted MRI (TR: 2660; TE: 142.7;

FOV: 16 × 26 cm) datasets using a 1.5 Tesla scanner General Electric HDx. Each MRI

slice has a thickness of 1 mm and a resolution of 512 × 512 pixels. The acquisition

matrix has a size of 320 × 320 mm2. This leads to a voxel size of:
1available on the web page: www.neobrains12.isi.uu.nl (accessed 20/11/2013)
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Figure 6.1: Images from two different sequences of the same patient; Image A is a T2-weighted
MR image; Image B is a T1-weighted MR image.

160

320
× 260

320
× 1 = 0.40625mm3 (6.1)

Our database consists of a total of 86 preterm datasets and 12 control datasets. The pre-

mature infants were born about three months early and the MR images were acquired

when they reached the term equivalent age. The scans were taken starting at the cere-

bellum and finishing at the top of the head. Out of the 86 volumes 15, which contain

a total of 1444 images, were manually annotated by a consultant pediatric radiologist

from the Temple Street Children Hospital, Dublin, which is an expert in the evaluation

of neonatal MRI data. These manually marked white matter volumes were employed

for numerical evaluations of the proposed technique. Strong motion artefacts, noise and

incorrect scaling during the acquisition were the reason to exclude some datasets from

our evaluation. A summary of our database is presented in Table 6.1.

Category Male Female Total
Term born 4 8 12

Preterm born 47 39 86
Manually marked 10 5 15

Table 6.1: Summary of the MRI data used in the experimental evaluation.
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6.2 Experiments

The experiments are performed in two steps. Firstly, a numerical evaluation is conducted

where the outcome of the automatic segmentation is compared to our manually annotated

database. In the second step, the segmentation framework is applied to a large database

of premature infants and infant born at term. The results of all experiments are presented

and the strengths and limitations of the proposed approach are analysed.

6.2.1 Evaluation Techniques

The evaluation was performed by calculating four different measurement indices such

as Dice Similarity Metric (first for the extracted white matter region and second for the

entire approach), False Positive and False Negative. The first metric describes the si-

milarity between the manually segmented data and the automatically segmented data.

The last two calculations measure the percentage of false segmented pixels also called

error rate. The Dice Similarity Metric, False Positive and False Negative measurements

were previously introduced in Section 3.7.1 where they were used to evaluate the brain

extraction algorithm. One additional Dice Similarity Metric is introduced in this chapter,

which measures the similarity of the framework.

2. In order to measure the similarity of the framework, an adaptation of the Dice Si-

milarity Measurement is employed. This measurement computes the similarity between

the manually annotated data and the automatically segmented data by including the un-

common voxels of the brain extraction and white matter segmentation. This is achieved

by dividing the number of shared voxels by the number of all the voxels. The shared

data in the framework is defined by the common voxels of the brain extraction volumes

minus the dissimilar voxels between the automatic and manual WM segmentation data.

To calculate the number of all voxels, the two brain extraction volumes are added but

the dissimilarity between the two WM volumes has to be subtracted. The mathematical

formula to calculate this metric is described as follows:

DSMapproach =
2 ∗ (|MBE1 ∩MBE2| −DWM)

|MBE1|+ |MBE2| −DWM
, (6.2)

where MBE1 describes the automatic brain extraction results and MBE2 is the ma-

nually annotated data. DWM denotes the dissimilarity between the manually and auto-

matically white matter segmented volume and is defined as follows:

DWM = |MWM1 \MWM2| (6.3)
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where |MWM1 \MWM2| =
∑

(x,y) f(MWM1(x, y) = 1 && MWM2(x, y) = 0)

where (x, y) are the pixel coordinates, where f(a) =

{
1 if a = true

0 if a = false
, MWM1

is the automatically white matter segmented volume and MWM2 is the manually white

matter segmented volume.

6.2.2 Numerical Evaluation

The numerical evaluation was accomplished by comparing the segmentation results

against the manually annotated data which were marked by our collaborating clinical

experts. In the first step the similarities between the automatically and manually marked

datasets were computed. The outcome is shown in Figure 6.2 and presents the Dice Si-

milarity Measurements calculated for the white matter volume and the system similarity

results.

Figure 6.2: Accuracy of the white matter extraction algorithm using Dice Similarity Metric, plus
the Dice Metric calculated for the entire system.

The proposed approach indicated an average Dice Similarity Measurement (DSM) of

88.9% for the system and 82.8% for the white matter volume. By comparing these re-

sults with other developed segmentation techniques, Wang et al. [126] stated a white

matter DSM between 85% to 90%, Xue et al. [132] presented a white matter DSM of

79.4% where Gui et al. [52] produced a white matter DSM of 94%. Prastawa et al. [95]

divided the white matter into myelinated and nonmyelinated white matter and the DSM

was 69% for the non-myelinated white matter and 67% for the myelinated white matter.

These results illustrate the difficulties and challenges associated with the segmentation
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of neonatal MRI brain data. To the best of our knowledge all segmentation methods

developed to process infant brain MR images were designed for data acquired with a 3T

scanner, which show improved contrast to MR data acquired with 1.5T scanners.

Some researchers [2] [90] performed studies that analysed the growth of the young chil-

dren’s brain. The DSM results for white matter segmentation at the age of two years

were 87% but at this stage the brain is more developed than at birth. These studies re-

veal the great challenge of segmenting brain MRI data, not only during infancy, but also

during the entire childhood until the brain is fully developed.

The experimental results presented in Figure 6.2 indicate that the system has high si-

milarity measurements. The following graph shown in Figure 6.3 outlines the error rates

by comparing the automatically extracted white matter volume against the manually seg-

mented data.

Figure 6.3: False positive and false negative rates obtained by the proposed white matter seg-
mentation algorithm.

One issue that should be considered when analysing the false positive and false nega-

tive rates is the influence of the partial volume voxels which were differently interpreted

in the manually annotated data compared to the automatically results. Figure 6.4 illus-

trates two brain MR images of premature infants where the manually marked and the

automatically segmented results are overlaid on the original data. The outer contour of

the manually annotated white matter is marked in green, whereas the contours of the

automatic segmented white matter is delineated in red. Two regions were magnified and

indicate that in those areas the automatic segmentation results illustrate a more precise

segmentation than the manually marked data. The reason for this is the low contrast
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structure, noise and partial volume effect, which produce a great challenge for clinical

experts when tracing the unclear contours.

Figure 6.4: Two MR images of different patients are illustrated. For each image a smaller section
is magnified to illustrate the differences between the manual (marked in green) and
automatic (marked in red) segmentation results. Due to blurred areas, it can be
observed that the automatic segmentation includes white matter and excludes grey
matter where the manually annotated images show less precision in the separation
of the white matter from the grey matter tissue.

To better understand the error rate results, a global error was calculated. Based on the

manually annotated data, a new error is computed for the case in which the automatically

segmented white matter volume surface is one pixel smaller than the manual segmenta-

tion. The white matter volume shows an error rate of 14.96%, the brain extraction (skull

stripping) algorithm has an error rate of 7.83%, and the entire framework has an error

rate of 13.58%. This was calculated as follows:

error = 1−
∑
imeroded∑
imoriginal

(6.4)

where imeroded is the original image (imoriginal), from which one pixel of the surface

was removed. An interesting outcome was presented by Prastawa et al. [95] where they

analysed the manually annotated data performed by two different clinical experts. The

DSM demonstrated a similarity of 73.625% for myelinated WM and 75.825% for non-

myelinated WM. An example where the annotated and automatic contours do not match

is presented in Figure 6.5. For clarity reasons, the contours are overlaid onto the corres-

ponding original image where red indicates the automatic contours and the green lines

present the annotated volume contours. Due to the blurred edges between the grey mat-
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ter and the white matter, the contours can differ slightly from each other. As previously

explained, these deviations can have a major effect on the similarity measurements and

on the False Positives and False Negatives error rates.

Figure 6.5: Two images which illustrate the differences between the manually marked data (out-
lined in green) and the automatically segmented data (shown in red).

To allow a more detailed evaluation, the white matter volumes for all patients included

in our database were compared to each other and are illustrated in Figure 6.6. The red

points indicate the results for the control data, whereas the blue points define the results

for preterm infants. The two lines presents the average values corresponding to each

category. Several studies [26] [62] [27] stated that the brain volume of preterm infants

is smaller than the volume of the infants born at term. This finding is consistent with

our results. It is still unclear if the reduced brain volume of the preterm infants is caused

by the premature delivery or if there is a connection to ill health [48]. The clinicians

from Temple Street Children Hospital, Dublin, aim to use the volume information as an

indicator for neurodevelopment impairment with the focus on cerebral palsy. Mathur et

al. [86] evaluated the brain injuries and neurodevelopmental impairment in premature

infant where the brain volume changes for various tissues are analysed over time. They

state that it is likely that volume changes in grey matter and white matter and intensity

variation in white matter reflect to neurodevelopmental impairments which are a conse-

quence of the grey matter and/or white matter injuries.
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Figure 6.6: White matter volume measurements for control and preterm infant data; in blue are
marked the preterm data measurements (86 patients); the red points illustrate the
results for control datasets (12 patients).

Table 6.2 shows additional results when the proposed white matter segmentation algo-

rithm was applied to premature infant MRI datasets. Each row illustrates examples of

one patient. The contours of the extracted white matter volume was projected on the ori-

ginal input data. In these images it can be observed that the variations between patients,

intensity inhomogeneities and partial volume effects have no impact on the outcome of

the segmentation procedure.

Following the experiments conducted with preterm infant data, the proposed white mat-

ter segmentation algorithm was applied to brain MRI datasets of infants which were born

at term. Figure 6.14 illustrates these results and they also demonstrate an accurate white

matter segmentation.

A clinical expert from the Temple Street Children Hospital, Dublin, has evaluated the

segmentation results. The clinician stated that the results indicate an overall accurate

segmentation when compared to the manually annotated data. The diffused contours

and the partial volume effects have been precisely segmented and the deep grey matter

and cerebellum region were accurately detected.

The following section provides a discussion about the strengths and limitations which

arose during the examination of the white matter segmentation results.
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Table 6.2: White matter segmentation results for preterm infant data.
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Figure 6.7: White matter segmentation results for term-born infants.

6.2.3 Discussion

The evaluation of the automatic segmentation results for infant MRI data is difficult

because a gold standard does not exist. The production of manually annotated data is a

demanding task that is substantially complicated by low-contrast structures, noise and

partial volume effects. As introduced in Chapter 2, the brain segmentation needs to

address many challenges when processing infant brain MRI data. The main challenges

can be summarised as follows:

• The scanning procedure has to be performed in a short time because the infants

tend to move during the data acquisition. In addition, the small head size requires

a high resolution acquisition process. Both factors lead to a reduced contrast to

noise ratio, which results in a low contrast between the grey matter tissue and the

white matter tissue.
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• In this study, the preterm infants were sedated during the acquisition. Sedated or

not, the newborns tend to move during the scanning procedure, which generates

motion artefacts that can affect the segmentation process.

• Each tissue type presents a significant level of intensity inhomogeneity which is

caused by the inhomogeneous magnetic signal during the scanning process and

also by the atypical biological characteristics of the preterm brain.

• Different tissue types show an overlapping between their intensity range. The-

refore, in some situations the localisation of the brain tissue may be extremely

difficult to achieve.

The main goal of this thesis is the development of a fully automatic intensity-based ap-

proach for the segmentation of the white matter volume in brain MRI data of preterm

and term-born infants. The method has provided accurate results by processing the blur-

red contours between the white matter and the grey matter. Some typical examples that

illustrate segmentation results are displayed in Figure 6.8. Although the shape, structure

and intensity distribution are inconsistent in preterm MRI, the proposed approach pro-

duces precise segmentations without prior information about shape or structure. This is

important because both, the structure and the shape varies between patients.

Figure 6.8: Examples of the automatic segmentation results.

The images in Figure 6.8 display three white matter segmentation results when dealing

with blurred contours and partial volume effects and these issues will be analysed in

detail in the remainder of the chapter

The Partial Volume Effect (PVE) has a significant impact on brain segmentation me-

thods. For example, it can induce errors when applying atlas registration and classifi-

cation techniques [22], as well as watershed-based techniques [52] to brain MRI. In the
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case of voxel-based morphometry, each voxel belongs to one class only. When a voxel

contains the signal of more than one intensity tissue, this hypothesis is not valid any-

more and can result in false classification [6]. As explained before, the PVE can affect

the numerical evaluation. An example that illustrates the PVE is displayed in Figure

6.9 where the manually marked data is compared to the automatic segmentation results.

Due to unclear intensity values, voxels could belong to either grey matter or white mat-

ter. These regions are pointed out with yellow arrows. The proposed approach deals well

with the PVE. One reason for this is that the EM algorithm is performed twice and each

time based on differently pre-processed brain volumes. The aim of this is to enhance

the contrast between the grey matter and the white matter. An additional reclassifica-

tion process was also included to help the precise identification of the white matter even

when the boundaries between the grey matter and the white matter are unclear.

Figure 6.9: Examples of segmentation results where the red marking indicates the outer white
matter contour identified by the proposed algorithm, and the green line represents the
outer contour of the manually annotated data. Due to unclear intensity values, the
images show differences between the two markings where the tissue could belong
to the grey matter or the white matter. These regions are pointed out with yellow
arrows.

Apart from the high level of PVE in infant brain MRI data, a major challenge is the low

contrast of the brain tissue. The proposed algorithm has provided accurate results when

dealing with low contrast between the grey matter and the white matter tissue. This

has been achieved by using a local reclassification of the voxels. Figure 6.10 illustrates

white matter segmentation results when dealing with this issue. The top row in Figure

6.10 illustrates the original images and the bottom row displays the white matter seg-

mentation results.

In contrast to adult brain MRI data, the early stage of the brain development leads to

large shape and brain structure variations between patients. The proposed approach has
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Figure 6.10: White matter segmentation results obtained from infant brain data which present
low contrast. The top row displays the original images and the bottom row shows
the segmentation results.

provided accurate results when dealing with variations in shape and structure. The main

reason is that the algorithm does not rely on prior information. In addition, adult brain

segmentation algorithms often rely on contours and contrast differences between tissues

and for this reason, these techniques generate incorrect segmentation when applied to

infant brain data. Figure 6.11 illustrates several white matter segmentation results per-

formed on infant brain data, which include variations in brain structure and shape. Each

column in the figure presents results for one patient.

During this investigation, the proposed technique was tested on data which shows strong

variation in the structure of the ventricles, as displayed in Figure 6.12. Cerebellum and

deep grey matter detection show precise detection on most of the analysed data. Ho-

wever, the approach can deal with a certain amount of dissimilarity between the two

ventricles. The part of the algorithm, where a large dissimilarity can cause problems, is

the deep grey matter detection, because it uses the ventricle features for DGM extrac-

tion. For a few patients under-segmentation occurs when strong dissimilarities between

the two ventricles are present. The left image in Figure 6.12 illustrates small errors in
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Figure 6.11: White matter segmentation results obtained from infant brain data, which include
large differences in brain structure and shape.

the deep grey matter detection because the left ventricle is slightly increased compared

to the right ventricle. However, in the middle image of the figure, both ventricles differ

significantly from each other, which has negative effects on the segmentation results. A

better solution can be obtained by processing the two ventricles separately, so that for

each ventricle an ellipse would be generated instead of one ellipse for both. For one

dataset this procedure failed, and this can be observed in the right image in Figure 6.12.

This is caused by the enlarged ventricles which are falsely classified as brain tissue du-

ring the brain extraction algorithm. Due to the large volume of CSF, and no distinction

between grey and white matter tissue, the brain extraction algorithm detects the CSF as

brain tissue which compromises the segmentation procedure. Our database contained

only one patient with this atypical ventricle enlargement and was, therefore, excluded

from evaluation.
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Figure 6.12: Three examples of preterm infant brain MR images in which the brain ventricles
show atypical structures and dissimilarities. In the left image, the ventricles differ
slightly from each other, whereas the image in the middle displays larger deviations
between left and right ventricles. In the middle example, the under-segmentation
can be observed, which is caused by the deep grey matter detection. The right
image illustrates extremely enlarged ventricles which severely reduce the brain tis-
sue volume. For this patient, the white matter segmentation failed.

A common characteristic in infant brain data is the intensity overlapping between brain

tissues, which complicates the segmentation process. In this study, the intensity over-

lapping is reduced by the bias field correction and the procedure of merging two EM

results which are based on two different pre-processing steps. By combining the two

EM results, the resulting tissue regions are enhanced and easier to separate. The local

voxel classification substantially reduces the occurrence of segmentation errors.

Some methods [2] [26] have shown difficulties to locate the white matter tissue sur-

rounded by gyri, which results in under-segmentation. This limitation can appear when

guiding the segmentation with templates or atlases on data which contains low contrast

and PVE. In order to address this issue, a local tissue classification is performed, which

prevents under-segmentation and allows a precise segmentation in these regions. Figure

6.13 illustrates four different examples of regions surrounded by gyri, which highlight

the precise segmentation obtained by the proposed algorithm. It can be observed that the

white matter segmentation process generates accurate results when dealing with narrow

and diffused regions.

Several studies [26] [62] [86] have not only emphasised the variations of preterm infant

brain MRI but they have also shown that there are differences in brain features between

the premature infants and the infants born at term. These variations include differences

within regions, small anatomical structures and rapid changes that occur during the brain

development [95]. The term-born infant brain is in a more advanced stage of the deve-
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Figure 6.13: Four magnified examples of different segmentation results, which show that the
regions surrounded by the gyri are precisely extracted.

lopment and the MR images present less intensity variations within the white matter

tissue and less shape differences. In this study the term-born infants were not sedated

and therefore the data consists of stronger distortions such as noise and motion artefacts.

In general, it is less likely for term-born infants to show abnormalities in the brain such

as enlarged ventricles. Regardless of the variations between preterm and term-born in-

fants, the outcome of the proposed white matter segmentation algorithm shows adequate

results for both categories. Figure 6.14 illustrates some white matter segmentation re-

sults when applied to infants born at term.

The proposed approach is a fully automatic parameter-driven white matter segmentation

technique. No registration process is required, which avoids the introduction of supple-

mentary errors when aligning the data to the template.

The results also reveal that the proposed technique can cope with diffused boundaries

and partial volume effects. The advantage of our method is its independence to atlases

or templates. This increases the potential of applying it to a broader range of infant data

with large variations in brain shape and structure including abnormalities. The methods

that utilise prior anatomical knowledge in forms of atlases or templates cannot be di-

rectly employed to infant brain MR images [3] [50].
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Figure 6.14: White matter segmentation results when applied to brain MRI for infants born at
term.

The recent trend in the development of brain segmentation methods is to implement the

registration, bias field and segmentation simultaneously using an EM technique. The aim

of this is to improve the general performance. During our investigation, we demonstrated

that by performing each segmentation step separately, the entire segmentation procedure

can be more robust. This is especially the case when considering the issue of converging

to local extrema. This assumption was evaluated by Murgasova [90], who developed an

EM technique for the investigation of the brain growth during early childhood.

In the next section, an evaluation is presented which was performed on an independent

database of healthy premature infant which were acquired using a 3T scanner.

6.3 3 Tesla Infant Data

Brain volume MRI of healthy premature infant have been provided by the Image Sciences

Institute2. ISI stated that no brain abnormalities are visible and after a follow-up at 15

months, the brain shows a normal structure. The three datasets consist of healthy pre-
2available on the web page: www.neobrains12.isi.uu.nl (accessed 20/11/2013)
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mature infants MR images which were scanned at 40 weeks age. All images were ac-

quired using a 3 Tesla Philips scanner. The T2-weighted images (TR=6293; TE=120;

FOV=180×180) have a thickness of 2mm and a resolution matrix of 0.35×0.35 mm2.

This datasets were acquired without any post-processing and the dicom format was trans-

formed into mhd and raw format. The database contains the images of a total of three

patients where each patient includes 50 images. The numerical evaluation was perfor-

med by the scientists of the Image Sciences Institute.

6.3.1 Evaluation

The manual segmentations used in this evaluation were generated by trained medical

students at the Image Sciences Institute. The manual segmentations were independently

verified by three neonatologists with each of them having at least seven years of ex-

perience in reading neonatal MRI scans. In their study, each voxel was assigned to

only one of the nine tissue classes (cortical grey matter, deep grey matter, unmyelina-

ted white matter, brain stem, cerebellum, ventricles, CSF, basal ganglia and thalami and

myelinated white matter). Three MRI datasets were made available for the NeoBrainS12

challenge and the results are independently evaluated by the scientists from the Image

Sciences Institute using the Dice Similarity Measurement (DSM) and a modified Haus-

dorff distance (MHD) (MHD)[32] (defined as the 95th-percentile Hausdorff distance).

The segmentation algorithm proposed in this thesis has returned precise and accurate

results by indicating an average Dice Similarity Measurement of 83% for the white mat-

ter segmentation when applied to 3T data. This accuracy is in the same range with

the DSM obtained for 1.5T MRI data used in the evaluation of this study (see Section

6.2.2)), which is 82.8%. Figure 6.15 illustrates some results that were obtained when the

proposed algorithm was applied to 3T MRI data.

Figure 6.15: White matter segmentation results using 3T infant brain MRI data.

133



6.3. 3 Tesla Infant Data

The aim of the NeoBrainS12 challenge was to compare different algorithms that are de-

veloped for infant brain segmentation. As mentioned before, this challenge addressed

the segmentation of nine tissue types but in our study only the non-myelinated white

matter was of interest. The following research teams developed brain tissue segmenta-

tion algorithms for the NeoBrainS12 challenge:

• The team from the University of Oxford developed an atlas-based segmentation

method. This approach is based on the SPM software [116] and it is used in

conjunction with a neonatal probabilistic atlas3. The initial segmentation results

are further processed to extract the brainstem, the basal ganglia and the thalami

using the intensity information in T1 and T2 images.

• FER-UMCU proposed an atlas-based segmentation algorithm which includes a

supervised voxel classification. In order to generate the atlas, the authors ma-

nually segmented seven infant datasets which were provided by the NeoBrainS12

challenge for algorithm training. The data is initially pre-processed using the BET

method [40] [112]], and then, during the supervised voxel classification process,

the results were refined using morphological operations such as closing and dila-

tion. This is followed by assigning each voxel to a tissue class by combining the

atlas with the T1 and T2 intensity information using a kNN classifier.

• The team from Imperial College London proposed an EM-based segmentation

approach for T2 infant MRI datasets. The MRI data is pre-processed using the

BET algorithm and N4 method [122]], and the k-means is used to generate a

subject-specific atlas. This atlas guides the EM segmentation procedure which

embeds an MRF algorithm [30] to incorporate the spatial dependencies that are

associated with each tissue.

• " The team from the University College London (UCL) proposed an extension

on infant brain segmentation algorithm proposed by Cardoso et al. [31]]. This

algorithm includes the segmentation of the myelinated white matter tissue and the

separation of the ventricle from the overall CSF tissue. The algorithm consists of a

MAP-EM based segmentation technique that includes bias field correction, MRF

to model spatial dependencies and a step that deals with the PVE voxels. The

relaxation strategy presented in the Cardoso et al. [31] was developed to guide

the segmentation of infant MRI data with abnormal anatomical structure. This

relaxation process was not included in the algorithm developed by the UCL team

because the data made available by the NeoBrainS12 challenge did not include

patients with pathologies.

3available at brain-development.org
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• " The team from the University of Pennsylvania (UPenn) proposed an EM-based

segmentation algorithm for infant brain MRI data. This algorithm initially applies

a registration method which is available in the Advanced Normalization Tools

(ANTs) [5]. The bias field correction is performed using the N4 algorithm. To

segment the brain tissues, an EM algorithm which incorporates an MRF is applied

with an atlas4 that is used to guide the segmentation process.

• The team UMCU1 have not provided any information about their segmentation

algorithm.

The average results obtained by all algorithms for white matter segmentation are presen-

ted in Table 6.3.

Team Name WM DSM WM MHD
Imperial 0.89 0.63
FER-UMCU* 0.91 0.40
Oxford 0.88 0.70
UCL 0.87 0.99
UPenn 0.85 1.68
UMCU1* 0.88 1.03
DCU 0.83 1.67

Table 6.3: Average white matter segmentation results for all algorithms that participate in the
NeoBrainS12 challenge. The algorithms which are indicated by the Asterisk have
used additional data provided by the NeoBrainS12 challenge.

The results shown in Table 6.3 were obtained when the algorithms were applied to three

healthy infant MRI datasets. It is important to mention that the algorithms developed by

FER-UMCU and UMCU1 were trained for this challenge using additional data that was

provided by NeoBrainS12. This additional data was used to generate an atlas that was

optimised for specific MRI data that is captured at the age of 40 weeks. Clearly, this

testing environment is optimal for supervised segmentation algorithms since the anato-

mic differences between healthy patients are not significant and the use of atlases allow

accurate modelling for PVE when dealing with diffuse contours. This observation is also

suggested by the modification in the algorithm developed by the UCL team where the

relaxation step as used by Cardoso et al. [31] was removed. The aim of this relaxation

step in [31] is to reduce the false classifications in infant data that present abnormal ana-

tomical structures. In the algorithm developed by the UCL team this step is removed to

maximise the segmentation results when applied to healthy MRI infant data. The pro-

posed algorithm described in this thesis was developed to identify the WM in MRI data
4available at brain-development.org
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with and without pathologies.

The slightly lower DSM results obtained by the proposed algorithm may have been de-

termined by the approach suggested by the clinical collaborators to deal with the classi-

fication of the PVE voxels that are positioned on diffuse contours. As mentioned before,

the PVE which consists of voxels that are generated by more than one brain tissue type

has an impact on the accuracy of brain segmentation methods. Since the MRI data made

available for the NeoBrainS12 challenge was acquired using a 2mm thickness, this will

enhance the presence of PVEs. Hence, there is a possibility that the evaluation of the

PVE has been considered differently than in our study. Unfortunately, this assumption

cannot be 100% validated since the segmentation results for the NeoBrainS12 challenge

were processed by the researchers from the Image Sciences Institute and no ground truth

data was made available to any group involved in the challenge.

Another important issue is that the age of the patients in the NeoBrainS12 data is 40

weeks. At this age the brain structure is better developed than the brain structure in the

1.5T data that was provided by our clinical collaborators from the Temple Street Chil-

drens’ Hospital. Although the testing environment using 3T MRI is different than the

one used in the segmentation of the WM in 1.5T data, the results presented in Table 6.3

indicate that the algorithm described in this thesis is accurate. This is illustrated by the

small MHD achieved by the proposed algorithm, which shows that it does not generate

large errors. In addition, the DSM result is slightly lower than the DSM values obtained

for other methods (differences are in the range of 2 to 6%).

While the proposed approach was developed for a pre-defined clinical study that ana-

lyses 1.5T MRI premature infant data, the tests on 3T MRI data further indicate that the

proposed method achieves similar performance when applied unchanged to MRI neona-

tal data that is captured with a different acquisition protocol.

6.3.2 Discussion

The proposed white matter segmentation method has provided accurate results by pro-

cessing the blurred contours between the white matter and the grey matter. Some examples

that illustrate segmentation results are displayed in Figure 6.16.

Although the scanning parameters used for this preterm MRI data are different than the

scanning parameters for 1.5T, the proposed approach produces precise segmentations

without any modifications on the algorithm. Figure 6.16 displays segmentation results

for the three tested patients where each row illustrates a different patient. It can be ob-

served that the algorithm produced accurate results. As mentioned in Section 6.2.3, the
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Figure 6.16: White matter segmentation results when the white matter segmentation method was
applied to 3T infant brain MRI data provided by the Image Sciences Institute. Each
row presents images of a different patient.

partial volume effect impacts on the accuracy of the brain segmentation methods. The

3T data has a thickness of 2mm which enhance the PVE. Nevertheless, the combination

of 2D and 3D algorithms in the framework has provided accurate results when dealing

with this issue.

A common problem in infant MRI segmentation is the strong variation of intensity

values within the white matter and some developed methods [52] [31] return under-

segmentation especially in regions close to the gyri. Similar to 1.5T data, the reclassifi-

cation of the PVE and diffused contour voxels in the proposed algorithm returns precise

segmentation without being negatively influenced by the inconsistent intensity values.

Figure 6.17 illustrates a set of examples that demonstrate the accuracy of the segmenta-

tion results.
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Figure 6.17: Four magnified examples of different segmentation results performed on 3T data-
sets, which illustrate that the regions surrounded by the gyri are precisely extracted.
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Chapter 7

Conclusions and Future Work

The aim of this chapter is to highlight the principal contributions associated with this

study and to provide conclusions in relation to the objectives of this research work. In

the second section, the future work and its significance for this research is outlined and

examined.

7.1 Contributions and Conclusions

This thesis has dealt with the difficulties which emerge during the segmentation of the

white matter tissue in brain MRI data from premature infants. Brain segmentation du-

ring infancy is a challenging task due to the early stage of brain development. However,

precise measurements of specific regions could provide an indicator for an early diag-

nosis of neurodevelopment impairment. An early diagnosis is of great advantage as an

early therapy can improve the state of life significantly. The motivation for this study

has raised from the challenge to automatically detect inconsistencies in young brain MRI

without facing the issues associated with the manual segmentation. During the develop-

ment of the proposed technique, a number of major and minor contributions emerged

in the area of brain tissue segmentation, brain field correction, variations in the brain

structure, and tissue intensity overlapping.

The major contribution of this thesis is the proposed approach to segment and mea-

sure the white matter volume in infant brain MRI. The synthesis of the contributions

which are presented throughout this thesis (Chapters 3, 4 and 5), represents the maxi-

misation of the white matter segmentation process. The proposed technique is based on

intensity-based methods and combines 2D and 3D methods. The state-of-the-art review,

presented in Chapter 2, reveals that the majority of the developed techniques are used for

adult MRI brain segmentation and suffer from limitations when applied to infant data.

These limitations are caused by the brain differences during various stages of develop-
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ment. The use of adult brain data has advantages because the patients are less likely

to move during the acquisition as well as the larger head size results in a better image

definition. The infant brain segmentation algorithms presented in Chapter 2 are mostly

implemented using an EM algorithm and the detection is guided by an atlas. The EM

technique has provided precise results in segmenting infant brain MRI and was, there-

fore, further investigated in this study.

Another important contribution of this thesis, presented in Chapter 3, is the novel brain

extraction algorithm, which is composed of data pre-processing, mask generation, brain

tissue segmentation and post-processing algorithms. The aim of the brain extraction

algorithm is the removal of all non-brain tissues. Due to the fact that our proposed

approach is built upon an intensity-based technique, this is essential to avoid misclassi-

fication. The proposed skull stripping method is not negatively influenced by intensity

inhomogeneities, noise or unclear borders between the brain and non-brain tissue. The

main reason is that the algorithm is composed of global processes for the broader ex-

traction and local procedures to reduce the impact of artefact influence. The method

does not rely on structure and shape differentiations between patients nor on knowledge

about the field of view in which each patient was scanned in. A quantitative evaluation

of the designed technique was performed and demonstrated the accuracy and efficiency

in extracting the brain tissue when facing significant changes in the MR data.

The next major contribution, addressed in Chapter 4, deals with the intensity inconsisten-

cies associated with the bias field that emerge from the inhomogeneity of the magnetic

field during the MRI acquisition. The bias field corruption arises on a slice-by-slice basis

and consequently the problem is addressed in the 2D domain. The main idea behind the

bias field correction is to distinguish between the two brain tissues where the intensity

ranges overlap. This classification issue was solved by segmenting the brain tissue, first

into four classes followed by the reduction of those classes into two by using proba-

bilistic calculations. This is important to minimise the influence of the partial volume

effects and bias field corruption. A low pass filter emphasises the low frequency signal

which allows the separation of the intensity inconsistencies from the image information.

During the evaluation of the white matter segmentation, a limitation surfaced, which is

given by the misclassification of the tissue on parts with extremely low contrast between

the white matter and the grey matter. An evaluation of the designed method is performed

and compared to state of the art techniques. The experimental results demonstrate that

the intensity inconsistencies are corrected while maintaining the brain structure.

A minor contribution of this thesis is to reduce the influence of the partial volume effects

(PVE). A partial volume voxel describes a data point whose intensity is generated by
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more than one tissue signal. The first time this issue is addressed is in Chapter 3 when

creating a mask of the brain tissue which separates the brain tissue from the non-brain

tissue. 3D based methods are used to create a volume of the brain including CSF and to

reduce the PVE. The second time this issue occurs is during the voxel re-classification

which finds the correct boundaries between the white matter and the grey matter. Using

a voxel re-classification to classify the partial volume voxels into grey or white matter

plays a significant role in minimising the influence of PVE.

A major contribution, presented in Chapter 5, is given by the development of the white

matter segmentation technique. Diffuse contours and partial volume effects prevent a

single EM algorithm to perform a successful segmentation. In order to improve the

white matter segmentation, the EM algorithm is performed twice and each time based

on different images. The combination of the two EM results emphasises the differences

between the grey matter and the white matter. The generation of a pre-segmented white

matter mask is used as a basis for a voxel re-classification which is performed to classify

the voxels that lie on diffused contours.

Another contribution is given by the difficult detection of the cerebellum and the deep

grey matter. This task is challenging due to the large intensity inconsistencies within

these regions. In adult brains the deep grey matter is divided into three parts on each

side due to the white matter tissue which runs through it. During infancy, the white

matter is not distinguishable from the grey matter within these regions and is, therefore,

detected as one region without the distinction of the white matter. However, the white

matter tissue contained in these areas influences the appearance of these regions and

due to the diffuse boundaries and large intensity changes on a pixel-by-pixel basis, the

segmentation remains difficult. Given that the white matter segmentation framework is

using intensity-based methods, this additional step is essential for precise and accurate

white matter segmentation results.

An important objective of this work was to evaluate quantitatively and qualitatively the

proposed white matter segmentation approach when comparing the results to manually

segmented data. By testing a large database of preterm and at term born infants’ brain

MR images, the evaluation revealed that the proposed approach has overcome several

challenges which can be listed as follows:

• The brain extraction algorithm has provided accurate results. After pre-processing

the data, the influence of partial volume voxels and diffused contours is reduced by

the generation of a brain mask. The removal of the non-brain tissue is important

in order to facilitate the following procedures.
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• Diffused contours were dealt with by the application of two EM methods, which

reduced the ambiguous boundaries and an additional re-classification model was

developed to guide the final segmentation.

• Intensity overlapping between tissues does not have an impact on the white mat-

ter segmentation results.

• Artefacts were reduced by the Coherence Enhancing Diffusion filter and the final

results show no impact during the segmentation procedure.

• Evaluation of the bias field correction proved difficult because a gold standard

does not exist. The evaluation of the segmentation approach revealed that the bias

field correction algorithm has provided accurate results when correcting the bias

field corruption.

• Manually annotated data can limit the evaluation process. It is a generally re-

cognised problem that the manual marking is prone to errors due to low contrast

structure and weak, missing or diffused boundaries.

• Partial volume effects indicated no influence on our approach and this issue was

precisely addressed.

• Structure and shape independence is an advantage of the proposed approach

because it segments infant brain data independent without the guidance of a pre-

defined template. There is a high risk that the preterm infants suffer from large

structure and shape abnormalities. This does not automatically mean ill health

because the infants can develop normally. To avoid misclassification when gui-

ding the segmentation process by an atlas, the proposed segmentation approach

consists of enhancing the images and performing local voxel classifications.

In this study a fully automatic white matter segmentation technique is presented where

the main focus is on the segmentation of premature infant brain MRI data. The approach

has overcome challenges such as noise, intensity overlapping, bias field corruption and

partial volume effects, and provided accurate results. The main focus in this study is

the white matter segmentation of premature infant data. The method has also provided

accurate results when applied to term-born infant MRI data.

The clinical experts from Temple Street Children Hospital, Dublin, have evaluated

the accuracy of the white matter segmentation results and the current research is focused

on the evaluation of the proposed segmentation when applied to a larger database.
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7.2 Future Work

While the objectives of this study have been fully accomplished, some future work can

be considered to advance the ideas in this research domain.

• Neurodevelopment impairment is caused by inconsistencies in the white matter re-

gion. One of the inconsistencies can appear in a lack of white matter tissue which

is replaced by CSF. The diminishing of the volume does also affect the surroun-

ding tissues. For this reason, an investigation on the volume measurement of the

deep grey matter, the grey matter and the cerebrospinal fluid could be performed.

The deep grey matter has been detected during the probabilistic segmentation al-

gorithm and would need to be disconnected from the cerebellum. The grey matter

could be extracted by subtracting the white matter from the brain tissue volume,

however, small CSF parts might remain in this volume and would need to be de-

tected.

• In order to avoid under-segmentation for infants with strong enlarged ventricles,

the approach can be improved by generating two ellipses to detect the deep grey

matter. Infants with strong enlarged ventricles usually include a strong dissimila-

rity between the right and left ventricles. The deep grey matter detection algorithm

is based on the similarity between ventricles to extract the deep grey matter region

by constructing one ellipse and it can result in under-segmentation. A solution is

to fit two ellipses at each side of the deep grey matter, which will result in a more

precise segmentation.

• An investigation into applying registration techniques to the data can open the

application of the framework to other databases. So far the proposed approach has

been evaluated on the 1.5T database provided by the collaborating clinicians and

the 3T datasets provided by the Image Sciences Institute.

On a second note, the case that a child could turn the head during the scanning

process has not been considered because this problem has not occurred in our da-

tabase. However, it is likely that this case can emerge and a registration technique

would prevent any erroneous segmentation during the 3D procedures.

• A more comprehensive performance of the designed approach can be reached with

a larger database of manually segmented data, which allows a larger qualitative

evaluation. Secondly, it has been mentioned before that the process of manually

marked data is prone to errors. For this reason, the evaluation could benefit from a

second set of manually annotated datasets which are marked by a second clinical

expert.
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Appendix A

State-of-the-Art Brain Extraction
Comparison Methods

A.1 Comparison Methods

Finding the right tools for a numerical comparison is difficult. The term skull-stripping

is by definition the removal of the non-brain tissue. But a precise definition on which

parts have to be removed does not exist. In our case, the cortical grey matter, white mat-

ter, deep grey matter and cerebellum will be retained after skull stripping. Some brain

extraction techniques also remove the cerebellum, other techniques leave the CSF in the

RoI. Each existing skull-stripping approach has been developed for a specific medical

task, therefore it is very difficult to do a precise evaluation. In our case, we use several

well-established state-of-the-art approaches because they were used for comparison in

many other studies.

Brain Surface Extraction (BSE) [109], Brain Extraction Tool (BET) [40] [112] and Sta-

tistical Parametric Mapping (SPM) [116], are brain segmentation tools available on the

internet. The BSE and BET methods have been described in detail in Section 3.1 and

the SPM approach was introduced in Section 2.4. BSE has been designed to process T1-

weighted MRI, whereas, BET and SPM have been developed for T1 and T2-weighted

MRI data. During this investigation, each tool was tuned to achieve the best of their per-

formance when applied to our database. For each software, we had to convert the Dicom

database into a Neuroimaging Informatics Technology Initiative (NIfTI-1) format1.

MRIConvert_2.0 2 is a medical image file converter tool that converts DICOM files

to NIfTI 1.1. NIfTI format is generally recognized with the file ending .nii or a combi-

nation of .hdr/.img. The "hdr" file called header includes all valuable information about
1 Additional information about the NIfTI format can be found at http://nifti.nimh.nih.gov/nifti-1/ (ac-

cessed 01/09/2010)
2available on the web page: http://lcni.uoregon.edu/ jolinda/MRIConvert (accessed 01/09/2010)
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A.1. Comparison Methods

images and the "img" file contains the image data. NIfTI was developed by the commu-

nity of neuroscientists and by the community of developers of informatics tools in order

to facilitate the analysis of neuroimaging data and is not an official format. NIfTI-1 can

store image data from any imaging modality such as Positron Emission Tomography

(PET), MRI, Computed Tomography (CT) and Electroencephalography (EEG).

A.1.1 Brain Surface Extraction

BSE is embedded in the segmentation tool BrainSuite [108], which is a magnetic re-

sonance image analysis tool designed for the identification of tissue types and surfaces

in brain MR images. BrainSuite was specifically developed for cortical surface extrac-

tion. The software is easy to install and includes a user friendly interface, which was

implemented in C++ to allow a fast brain extraction process.

The BSE algorithm functions in a stepwise manner that allows the user to adjust

its parameters, which include: diffusion iterations, diffusion constant, edge constant

and erosion size. Additionally, the user has the option to add the removal of the neck,

brainstem and to dilate the final mask. The only parameter we needed to adjust was the

size of the structuring element employed by the erosion algorithm in the final step. A

negative aspect of BrainSuite is that we needed to restart the application for each patient

data.

A.1.2 Brain Extraction Tool

MRIcroN [99] applies BET (version 1) and FSL [40] [112] applies BET2 (version 2)3.

MRIcroN is a simple and user friendly tool for medical image analysis, which can be

used to create 2D or 3D renderings of statistical overlay maps on brain anatomy images.

FSL runs in a Linux, Mac OS and Windows environment, but with the addition that

Windows users have to install a virtualisation platform called VMware Player4 before

installing the FSL Library. FSL is implemented in C++ and provides a fast segmentation.

The best results for both tools have been returned using their default values with a

fractional intensity threshold of 0.5. Changing the fractional intensity threshold from its

default value of 0.5 will change the overall segmented brain region. If the threshold is

smaller than 0.5, the segmented area will become larger. In case the threshold is larger

than 0.5, the segmented area will become smaller. This threshold always take values

within the range 0 and 1.
3a detailed description on the newest version of BET used in FSL including the differences to the

previous version of BET is available at http://www.fmrib.ox.ac.uk/analysis/research/bet/bet2.pdf (accessed
06/09/2010)

4is available at http://www.vmware.com/products/player/ (accessed 02/09/2010)

II
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A.1.3 SPM8

The well-established state of the art tool SPM was applied to our database. Experimen-

tally, we modified the SPM parameters and the best results were obtained by adjusting

the bias regularisation to a value of 0.1 and using the native space for the generation of

GM, WM and CSF. SPM extracts three regions (GM, WM and CSF) and for each region

a volume is generated. In the numerical evaluation, the resulting volumes of GM and

WM were combined into one volume and compared against our automatically segmen-

ted results.

A.2 Results

We performed a quantitative evaluation of four state-of-the-art methods. This investi-

gation was been carried out to provide comparative results with other algorithms that

have been developed for infant MRI brain segmentation [33] [82]. Chiverton et al. [33]

employed BET on their 3T MRI database which consists of T1 and T2 datasets. Ma-

haparta et al. [82] utilised BET and BSE on their 3T MRI database which was as well

built upon T1 and T2 datasets. In the case of SPM, the segmented volumes of GM and

WM were merged together before measuring the similarity rate. For this evaluation the

numerical results have been calculated between the automatically segmented and ma-

nually segmented data using five datasets of our database. The evaluation techniques

(Dice Similarity Measurement (DSM), False Positive (FP) and the False Negative (FN))

which are applied in these experiments, are described in Section 3.7.1. All results are

shown in Table A.1 and the best results are highlighted in bold.

The quantitative results presented in Table A.1 indicate that the methods discussed

in the previous section return less accurate results when applied to the skull stripping of

brain MRI data of premature infants than the proposed brain extraction algorithm. It has

to be clarified that BSE and BET are based on a different definition of skull stripping

than the proposed method. In this study, the CSF has been associated as non-brain

tissue, whereas, in BSE and BET the CSF was included in the brain tissue which has to

be considered when examining the results. The strong false positive rate is an indication

for this which is caused by the CSF which is retained in the volume. As mentioned

before when regarding SPM, only the results of GM and WM were considered for this

evaluation.

Table A.2 reveals the accuracy of each analysed technique in comparison with other

brain extraction methods by observing the average results of all the tests. In this expe-

riment, the proposed technique provided the overall best results in the dice similarity, as

illustrated in Table A.2. The BET algorithm indicates a low false negative rate but on

the other hand, the false positive rate illustrates a high over-segmentation level, which

can be explained by the CSF tissue that is included in the brain tissue volume. When
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Table A.1: Quantitative performance evaluation for four state-of-the-art implementations. Best
results are highlighted in bold

Methodology DSM FP(%) FN(%)
Patient 1 Proposed method 0.9609 2.14 5.56

BET2 0.8800 26.86 0.31
BSE 0.9065 18.29 1.93
BET 0.7840 38.35 10.78
SPM 0.9076 16.14 3.50

Patient 2 Proposed method 0.9656 3.05 3.81
BET2 0.8793 26.51 0.74
BSE 0.9029 1.06 16.83
BET 0.8547 30.79 2.39
SPM 0.9187 12.59 4.33

Patient 3 Proposed method 0.9602 3.01 4.88
BET2 0.8838 26.21 0.16
BSE 0.7437 24.60 26.23
BET 0.7097 45.01 20.23
SPM 0.8386 27.65 7.83

Patient 4 Proposed method 0.9525 5.32 4.22
BET2 0.8586 32.90 0.03
BSE 0.9044 0.34 17.17
BET 0.8144 38.37 49.45
SPM 0.8733 27.89 0.86

Patient 5 Proposed method 0.9603 3.50 4.41
BET2 0.8955 22.49 0.69
BSE 0.9262 12.62 2.86
BET 0.8714 25.27 3.28
SPM 0.8529 15.57 14.06

comparing the two BET results, the newer version provides more accurate results. SPM

tends to include non-brain tissue into the brain volume as illustrated in Figure A.1. One

reason for this is that the voxel-based morphometry registers an adult brain template to

the data. As mentioned in Chapter 2, the registration of adult templates on infant data

cause erroneous segmentation.

Every approach has its strength and limitations, which is reflected in the experimen-

tal values shown in Table A.1 and Table A.2. Figure A.1 illustrates the results obtained

by the different algorithms. Image (A) presents the original image, which is followed by

the results for BET2 (B), BSE (C), BET (D), SPM (E) and the outcome of the propo-

sed approach (F). It can be observed that each tool returns some of the CSF after brain

extraction except the proposed technique. The experimental results indicate large over-

segmentations by including non-brain parts in the brain volume. The outcome of the

BSE reveals that the technique does not find the correct contours between brain tissue

and non-brain tissue, which results in under-segmentation.
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Table A.2: Average values obtained for the entire database.

Methodology DSM FP(%) FN(%)
Proposed method 0.9599 3.40 4.58
BET2 0.8794 26.99 0.39
BSE 0.8767 11.38 13.01
BET 0.8068 35.55 17.23
SPM 0.8782 19.97 6.12

Figure A.1: Results obtained for all brain extraction tools. Image (A) presents the original
image, which is followed by the brain segmentation results BET2 (B), BSE (C),
BET (D), SPM (E) and the outcome of the proposed approach (F).
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